801 research outputs found

    Performance of photomultiplier tubes and sodium iodide scintillation detector systems

    Get PDF
    The performance of photomultiplier tubes (PMT's) and scintillation detector systems incorporating 50.8 by 1.27 cm NaI (T l) crystals was investigated to determine the characteristics of the photomultiplier tubes and optimize the detector geometry for the Burst and Transient Source Experiment on the Gamma Ray Observatory. Background information on performance characteristics of PMT's and NaI (T l) detectors is provided, procedures for measurement of relevant parameters are specified, and results of these measurements are presented

    The spectrum of cosmic electron with energies between 6 and 100 GeV

    Get PDF
    This experiment was carried out during three balloon flights which provided a total exposure of 3500 + or - 60 sq m sec sterad at an average depth of 4.8 g/sq cm The detector, in which the development of cascade showers in a 33.7 rl absorber was sampled by 10 scintillation counters and 216 Geiger-Muller tubes, was calibrated at the Cornell Electron Synchrotron, the separation of cosmic electrons from the nuclear background was confirmed by extensive analysis of data from the flights, from the calibration and from ground level exposure. The spectral intensity of primary cosmic ray electrons were found in particles/sq m sec sterad GeV. Similarly, the ground level spectrum of secondary cosmic ray electrons was also found. The steepness of the spectrum of cosmic electrons relative to that of nuclei implies one of the following conclusions: either the injection spectrum of electrons is steeper than that of nuclei, or the electron spectrum has been steepened by Compton/synchrotron losses in the energy range covered by the experiment

    Capabilities of the GRO/BATSE for monitoring of discrete sources

    Get PDF
    Although the Burst and Transient Source Experiment (BATSE) to be flown on the Gamma Ray Observatory has as its primary objective the detection of gamma ray bursts, its uncollimated design will enable it to serve a unique function as an all-sky monitor for bright hard X-ray and low-energy gamma ray sources. Pulsating sources may be detected by conventional techniques such as summed-epoch and Fourier analyses. The BATSE will, in addition, be able to use Earth occultation in an unprecedented way to monitor sufficiently bright sources as often as several times per day over approx. 85% of the sky. Estimates of the expected BATSE sensitivity using both of these techniques are presented

    A computer system to analyze showers in nuclear emulsions: Center Director's discretionary fund report

    Get PDF
    A system to rapidly digitize data from showers in nuclear emulsions is described. A TV camera views the emulsions though a microscope. The TV output is superimposed on the monitor of a minicomputer. The operator uses the computer's graphics capability to mark the positions of particle tracks. The coordinates of each track are stored on a disk. The computer then predicts the coordinates of each track through successive layers of emulsion. The operator, guided by the predictions, thus tracks and stores the development of the shower. The system provides a significant improvement over purely manual methods of recording shower development in nuclear emulsion stacks

    Time Dependent Clustering Analysis of the Second BATSE Gamma-Ray Burst Catalog

    Get PDF
    A time dependent two-point correlation-function analysis of the BATSE 2B catalog finds no evidence of burst repetition. As part of this analysis, we discuss the effects of sky exposure on the observability of burst repetition and present the equation describing the signature of burst repetition in the data. For a model of all burst repetition from a source occurring in less than five days we derive upper limits on the number of bursts in the catalog from repeaters and model-dependent upper limits on the fraction of burst sources that produce multiple outbursts.Comment: To appear in the Astrophysical Journal Letters, uuencoded compressed PostScript, 11 pages with 4 embedded figure

    The BATSE experiment on the Compton Gamma Ray Observatory: Status and some early results

    Get PDF
    The Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory (GRO) is a sensitive all-sky detector system. It consists of eight uncollimated detectors at the corners of the spacecraft which have a total energy range of 15 keV to 100 MeV. The primary objective of BATSE is the detection, location, and study of gamma ray bursts and other transient sources. The instrement also has considerable capability for the study of pulsars, solar flares, and other discrete high energy sources. The experiment is now in full operation, detecting about one gamma ray burst per day. A brief description of the on-orbit performance of BATSE is presented, along with examples of early results from some of the gamma ray bursts

    The Ulysses Supplement to the BATSE 4Br Catalog of Cosmic Gamma-Ray Bursts

    Get PDF
    We present Interplanetary Network localization information for 147 gamma-ray bursts observed by the Burst and Transient Source Experiment between the end of the 3rd BATSE catalog and the end of the 4th BATSE catalog, obtained by analyzing the arrival times of these bursts at the Ulysses and Compton Gamma-Ray Observatory (CGRO) spacecraft. For any given burst observed by these two spacecraft, arrival time analysis (or "triangulation") results in an annulus of possible arrival directions whose half-width varies between 7 arcseconds and 2.3 degrees, depending on the intensity and time history of the burst, and the distance of the Ulysses spacecraft from Earth. This annulus generally intersects the BATSE error circle, resulting in an average reduction of the error box area of a factor of 25.Comment: Accepted for publication in the Astrophysical Journal Supplemen
    corecore