458 research outputs found

    Improving Trip- and Slip-Resisting Skills in Older People: Perturbation Dose Matters

    Get PDF
    Aging negatively affects balance recovery responses after trips and slips. We hypothesize that older people can benefit from brief treadmill-based trip and slip perturbation exposure despite reduced muscular capacities, but with neuropathology, their responsiveness to these perturbations will be decreased. Thus, to facilitate long-term benefits and their generalizability to everyday life, one needs to consider the individual threshold for perturbation dose. This is a non-final version of an article published in final form in Exercise and Sport Sciences Review

    Stability-normalised walking speed: A new approach for human gait perturbation research

    Get PDF
    © 2019 In gait stability research, neither self-selected walking speeds, nor the same prescribed walking speed for all participants, guarantee equivalent gait stability among participants. Furthermore, these options may differentially affect the response to different gait perturbations, which is problematic when comparing groups with different capacities. We present a method for decreasing inter-individual differences in gait stability by adjusting walking speed to equivalent margins of stability (MoS). Eighteen healthy adults walked on a split-belt treadmill for two-minute bouts at 0.4 m/s up to 1.8 m/s in 0.2 m/s intervals. The stability-normalised walking speed (MoS = 0.05 m) was calculated using the mean MoS at touchdown of the final 10 steps of each speed. Participants then walked for three minutes at this speed and were subsequently exposed to a treadmill belt acceleration perturbation. A further 12 healthy adults were exposed to the same perturbation while walking at 1.3 m/s: the average of the previous group. Large ranges in MoS were observed during the prescribed speeds (6–10 cm across speeds) and walking speed significantly (P < 0.001) affected MoS. The stability-normalised walking speeds resulted in MoS equal or very close to the desired 0.05 m and reduced between-participant variability in MoS. The second group of participants walking at 1.3 m/s had greater inter-individual variation in MoS during both unperturbed and perturbed walking compared to 12 sex, height and leg length-matched participants from the stability-normalised walking speed group. The current method decreases inter-individual differences in gait stability which may benefit gait perturbation and stability research, in particular studies on populations with different locomotor capacities. [Preprint: https://doi.org/10.1101/314757

    Glassy dynamics in thin films of polystyrene

    Full text link
    Glassy dynamics was investigated for thin films of atactic polystyrene by complex electric capacitance measurements using dielectric relaxation spectroscopy. During the isothermal aging process the real part of the electric capacitance increased with time, whereas the imaginary part decreased with time. It follows that the aging time dependences of real and imaginary parts of the electric capacitance were primarily associated with change in volume (film thickness) and dielectric permittivity, respectively. Further, dielectric permittivity showed memory and rejuvenation effects in a similar manner to those observed for poly(methyl methacrylate) thin films. On the other hand, volume did not show a strong rejuvenation effect.Comment: 7 pages, 7 figures. Phys. Rev. E (in press

    History Memorized and Recalled upon Glass Transition

    Full text link
    The memory effect upon glassification is studied in the glass to rubber transition of vulcanized rubber with the strain as a controlling parameter. A phenomenological model is proposed taking the history of the temperature and the strain into account, by which the experimental results are interpreted. The data and the model demonstrate that the glassy state memorizes the time-course of strain upon glassification, not as a single parameter but as the history itself. The data also show that the effect of irreversible deformation in the glassy state is beyond the scope of the present model. Authors' remark: The title of the paper in the accepted version is above. The title appeared in PRL is the one changed by a Senior Assistant Editor after acceptance of the paper. The recovery of the title was rejected in the correction process.Comment: 4 pages, 4 figure

    B595: An Illustrated Review of Apple Virus Diseases

    Get PDF
    The writers have attempted to review the available literature on the subject and to organize it in an orderly fashion. The name, symptomatology, host range, and geographic distribution are given for each virus disease. Where it was possible illustrations of each disorder have also been included. This bulletin addresses the following apple virus diseases: apple mosaic, flat limb, rubbery wood, stem pitting, spy 227 apple reaction, dwarf fruit and decline, chat fruit, chlorotic leaf spot, leaf pucker, dapple apple, false sting and green crinkle, green mottle, ring spot, star cracking, scar skin, rough skin, apple proliferation, rosettehttps://digitalcommons.library.umaine.edu/aes_bulletin/1068/thumbnail.jp

    Retention of gait stability improvements over 1.5 years in older adults:effects of perturbation exposure and triceps surae neuromuscular exercise

    Get PDF
    The plantarflexors play a crucial role in recovery from sudden disturbances to gait. The objective of this study was to investigate whether medium (months)- or long(years)-term exercise-induced enhancement of triceps surae (TS) neuromuscular capacities affects older adults' ability to retain improvements in reactive gait stability during perturbed walking acquired from perturbation training sessions. Thirty-four adult women (65 +/- 7 yr) were recruited to a perturbation training group (n = 13) or a group that additionally completed 14 wk of TS neuromuscular exercise (n = 21), 12 of whom continued with the exercise for 1.5 yr. The margin of stability (MoS) was analyzed at touchdown of the perturbed step and the first recovery step following eight separate unexpected trip perturbations during treadmill walking. TS muscle-tendon unit mechanical properties and motor skill performance were assessed with ultrasonography and dynamometry. Two perturbation training sessions (baseline and after 14 wk) caused an improvement in the reactive gait stability to the perturbations (increased MoS) in both groups. The perturbation training group retained the reactive gait stability improvements acquired over 14 wk and over 1.5 yr. with a minor decay over time. Despite the improvements in TS capacities in the additional exercise group. no benefits for the reactive gait stability following perturbations were identified. Therefore, older adults' neuromotor system shows rapid plasticity to repeated unexpected perturbations and an ability to retain these adaptations in reactive gait stability over a long time period, but an additional exercise-related enhancement of TS capacities seems not to further improve these effects. NEW & NOTEWORTHY Older adults' neuromotor system shows rapid plasticity to repeated exposure to unexpected perturbations to gait and an ability to retain the majority of these adaptations in reactive recovery responses over a prolonged time period of 1.5 yr. However, an additional exercise-related enhancement of TS neuromuscular capacities is not necessarily transferred to the recovery behavior during unexpected perturbations to gait in older adults

    Perturbation-based balance training: Principles, mechanisms and implementation in clinical practice

    Get PDF
    Since the mid-2000s, perturbation-based balance training has been gaining interest as an efficient and effective way to prevent falls in older adults. It has been suggested that this task-specific training approach may present a paradigm shift in fall prevention. In this review, we discuss key concepts and common issues and questions regarding perturbation-based balance training. In doing so, we aim to provide a comprehensive synthesis of the current evidence on the mechanisms, feasibility and efficacy of perturbation-based balance training for researchers and practitioners. We address this in two sections: “Principles and Mechanisms” and “Implementation in Practice.” In the first section, definitions, task-specificity, adaptation and retention mechanisms and the dose-response relationship are discussed. In the second section, issues related to safety, anxiety, evidence in clinical populations (e.g., Parkinson's disease, stroke), technology and training devices are discussed. Perturbation-based balance training is a promising approach to fall prevention. However, several fundamental and applied aspects of the approach need to be further investigated before it can be widely implemented in clinical practice

    Gait in patients with symptomatic osteoporotic vertebral compression fractures over 6 months of recovery

    Get PDF
    BACKGROUND: One factor related to disability in people with spinal deformity is decreased postural control and increased risk of falling. However, little is known about the effect of osteoporotic vertebral compression fractures (OVCFs) and their recovery on gait and stability. Walking characteristics of older adults with and without vertebral fractures have not yet been compared. AIMS: The purpose of the current study was to examine the spatiotemporal gait parameters and their variability in patients with an OVCF and healthy participants during treadmill walking at baseline and after 6 months of recovery. METHODS: Twelve female patients suffering a symptomatic OVCF were compared to 11 matched controls. Gait analysis was performed with a dual-belt instrumented treadmill with a 180° projection screen providing a virtual environment (computer-assisted rehabilitation environment). Results of patients with an OVCF and healthy participants were compared. Furthermore, spatiotemporal gait parameters were assessed over 6 months following the fracture. RESULTS: Patients suffering from an OVCF appeared to walk with significantly shorter, faster and wider strides compared to their healthy counterparts. Although stride time and length improved over time, the majority of the parameters analysed remained unchanged after 6 months of conservative treatment. DISCUSSION: Since patients do not fully recover to their previous level of mobility after 6 months of conservative treatment for OVCF, it appears of high clinical importance to add balance and gait training to the treatment algorithm of OVCFs. CONCLUSIONS: Patients suffering from an OVCF walk with shorter, faster and wider strides compared to their healthy counterparts adopt a less stable body configuration in the anterior direction, potentially increasing their risk of forward falls if perturbed. Although stride time and stride length improve over time even reaching healthy levels again, patients significantly deviate from normal gait patterns (e.g. in stability and step width) after 6 months of conservative treatment

    Retention, savings and interlimb transfer of reactive gait adaptations in humans following unexpected perturbations

    Get PDF
    Reactive locomotor adaptations are crucial for safe mobility, but remain relatively unexplored. Here we assess reactive gait adaptations, and their retention, savings and interlimb transfer. Using new methods to normalise walking speed and perturbation magnitude, we expose eighteen healthy adults to ten unexpected treadmill belt accelerations during walking (the first and last perturbing the right leg, the others perturbing the left leg) on two days, one month apart. Analysis of the margins of stability using kinematic data reveals that humans reactively adapt gait, improving stability and taking fewer recovery steps, and fully retain these adaptations over time. On re-exposure, retention and savings lead to further improvements in stability. Currently, the role of interlimb transfer is unclear. Our findings show that humans utilise retention and savings in reactive gait adaptations to benefit stability, but that interlimb transfer may not be exclusively responsible for improvements following perturbations to the untrained limb
    corecore