919 research outputs found

    Decoherence in a Josephson junction qubit

    Full text link
    The zero-voltage state of a Josephson junction biased with constant current consists of a set of metastable quantum energy levels. We probe the spacings of these levels by using microwave spectroscopy to enhance the escape rate to the voltage state. The widths of the resonances give a measurement of the coherence time of the two states involved in the transitions. We observe a decoherence time shorter than that expected from dissipation alone in resonantly isolated 20 um x 5 um Al/AlOx/Al junctions at 60 mK. The data is well fit by a model including dephasing effects of both low-frequency current noise and the escape rate to the continuum voltage states. We discuss implications for quantum computation using current-biased Josephson junction qubits, including the minimum number of levels needed in the well to obtain an acceptable error limit per gate.Comment: 4 pages, 6 figure

    Charge and Isospin Fluctuations in High Energy pp-Collisions

    Full text link
    Charge and isospin event-by-event fluctuations in high-energy pp-collisions are predicted within the Unitary Eikonal Model, in particular the fluctuation patterns of the ratios of charged-to-charged and neutral-to-charged pions. These fluctuations are found to be sensitive to the presence of unstable resonances, such as ρ\rho and ω\omega mesons. We predict that the charge-fluctuation observable DUEMD_{UEM} should be restricted to the interval 8/3≀DUEM≀48/3\le D_{UEM}\le 4 depending on the ρ/π\rho /\pi production ratio. Also, the isospin fluctuations of the DCC-type of the ratio of neutral-to-charged pions are suppressed if pions are produced together with ρ\rho mesons.Comment: Latex, 5 pages, no figures. To appear in the proceedings of 9th Adriatic Meeting, Dubrovnik, Croatia, 4 - 14 September 2003. Added reference into reference no.

    Observation of quantum oscillations between a Josephson phase qubit and a microscopic resonator using fast readout

    Full text link
    We have detected coherent quantum oscillations between Josephson phase qubits and microscopic critical-current fluctuators by implementing a new state readout technique that is an order of magnitude faster than previous methods. The period of the oscillations is consistent with the spectroscopic splittings observed in the qubit's resonant frequency. The results point to a possible mechanism for decoherence and reduced measurement fidelity in superconducting qubits and demonstrate the means to measure two-qubit interactions in the time domain

    State tomography of capacitively shunted phase qubits with high fidelity

    Full text link
    We introduce a new design concept for superconducting quantum bits (qubits) in which we explicitly separate the capacitive element from the Josephson tunnel junction for improved qubit performance. The number of two-level systems (TLS) that couple to the qubit is thereby reduced by an order of magnitude and the measurement fidelity improves to 90%. This improved design enables the first demonstration of quantum state tomography with superconducting qubits using single shot measurements.Comment: submitted to PR

    Microwave Dielectric Loss at Single Photon Energies and milliKelvin Temperatures

    Full text link
    The microwave performance of amorphous dielectric materials at very low temperatures and very low excitation strengths displays significant excess loss. Here, we present the loss tangents of some common amorphous and crystalline dielectrics, measured at low temperatures (T < 100 mK) with near single-photon excitation energies, using both coplanar waveguide (CPW) and lumped LC resonators. The loss can be understood using a two-level state (TLS) defect model. A circuit analysis of the half-wavelength resonators we used is outlined, and the energy dissipation of such a resonator on a multilayered dielectric substrate is considered theoretically.Comment: 4 pages, 3 figures, submitted to Applied Physics Letter

    Transformed Dissipation in Superconducting Quantum Circuits

    Full text link
    Superconducting quantum circuits must be designed carefully to avoid dissipation from coupling to external control circuitry. Here we introduce the concept of current transformation to quantify coupling to the environment. We test this theory with an experimentally-determined impedance transformation of ∌105\sim 10^5 and find quantitative agreement better than a factor of 2 between this transformation and the reduced lifetime of a phase qubit coupled to a tunable transformer. Higher-order corrections from quantum fluctuations are also calculated with this theory, but found not to limit the qubit lifetime. We also illustrate how this simple connection between current and impedance transformation can be used to rule out dissipation sources in experimental qubit systems.Comment: 4 pages, 4 figure

    Observation of bosonic coalescence of photon pairs

    Full text link
    Quantum theory predicts that two indistinguishable photons incident on a beam-splitter interferometer stick together as they exit the device (the pair emerges randomly from one port or the other). We use a special photon-number-resolving energy detector for a direct loophole-free observation of this quantum-interference phenomenon. Simultaneous measurements from two such detectors, one at each beam-splitter output port, confirm the absence of cross-coincidences.Comment: 4 pages, 2 figures, submitted to Phys. Rev. Let

    Coherent photon assisted cotunneling in a Coulomb blockade device

    Full text link
    We study cotunneling in a double junction Coulomb blockade device under the influence of time dependent potentials. It is shown that the ac-bias leads to photon assisted cotunneling which in some cases may dominate the transport. We derive a general non-perturbative expression for the tunneling current in the presence of oscillating potentials and give a perturbative expression for the photon assisted cotunneling current.Comment: Replaced with a longer paper which includes a non-perturbative calculation. 13 pages with 1 figure. To be published in Physical Review
    • 

    corecore