1,152 research outputs found

    Preseason Functional Test Scores are Associated with Future Sports Injury in Female Collegiate Athletes

    Full text link
    Brumitt, J, Heiderscheit, B, Manske, R, Niemuth, PE, Mattocks, A, and Rauh, MJ. Preseason functional test scores are associated with future sports injury in female collegiate athletes. J Strength Cond Res 32(6): 1692–1701, 2018—Recent prospective cohort studies have reported preseason functional performance test (FPT) measures and associations with future risk of injury; however, the findings associated with these studies have been equivocal. The purpose of this study was to determine the ability of a battery of FPTs as a preseason screening tool to identify female Division III (D III) collegiate athletes who may be at risk for a noncontact time-loss injury to the lower quadrant (LQ = low back and lower extremities). One hundred six female D III athletes were recruited for this study. Athletes performed 3 FPTs: standing long jump (SLJ), single-leg hop (SLH) for distance, and the lower extremity functional test (LEFT). Time-loss sport-related injuries were tracked during the season. Thirty-two (24 initial and 8 subsequent) time-loss LQ injuries were sustained during the study. Ten of the 24 initial injuries occurred at the thigh and knee. At-risk athletes with suboptimal FPT measures (SLJ #79% ht; (B) SLH #64% ht; LEFT $118 seconds) had significantly greater rates of initial (7.2 per 1,000 athletic exposures [AEs]) and total (7.6 per 1,000 AEs) time-loss thigh or knee injuries than the referent group (0.9 per 1,000 AEs; 1.0 per 1,000 AEs, respectively). At-risk athletes were 9 times more likely to experience a thigh or knee injury (odds ratio [OR] = 9.7, confidence interval [CI]: 2.3–39.9; p = 0.002) than athletes in the referent group. At-risk athletes with a history of LQ sports injury and lower off-season training habits had an 18-fold increased risk of a time-loss thigh or knee injury during the season (adjusted OR = 18.7, CI: 3.0–118.1; p = 0.002). This battery of FPTs appears useful as a tool for identifying female D III athletes at risk of an LQ injury, especially to the thigh or knee region

    The First Detailed Look at a Brown Dwarf Disk

    Full text link
    The combination of mid-infrared and recent submm/mm measurements allows us to set up the first comprehensive spectral energy distribution (SED) of the circumstellar material around a young Brown Dwarf. Simple arguments suggest that the dust is distributed in the form of a disk. We compare basic models to explore the disk parameters. The modeling shows that a flat disk geometry fits well the observations. A flared disk explains the SED only if it has a puffed-up inner rim and an inner gap much larger than the dust sublimation radius. Similarities and differences with disks around T Tauri stars are discussed.Comment: 11 pages, 1 figur

    Electronic theory for superconductivity in Sr2_2RuO4_4: triplet pairing due to spin-fluctuation exchange

    Full text link
    Using a two-dimensional Hubbard Hamiltonian for the three electronic bands crossing the Fermi level in Sr2_2RuO4_4 we calculate the band structure and spin susceptibility χ(q,ω)\chi({\bf q}, \omega) in quantitative agreement with nuclear magnetic resonance (NMR) and inelastic neutron scattering (INS) experiments. The susceptibility has two peaks at {\bf Q}i=(2π/3,2π/3)_i = (2\pi/3, 2\pi/3) due to the nesting Fermi surface properties and at {\bf q}i=(0.6π,0)_i = (0.6\pi, 0) due to the tendency towards ferromagnetism. Applying spin-fluctuation exchange theory as in layered cuprates we determine from χ(q,ω)\chi({\bf q}, \omega), electronic dispersions, and Fermi surface topology that superconductivity in Sr2_2RuO4_4 consists of triplet pairing. Combining the Fermi surface topology and the results for χ(q,ω)\chi({\bf q}, \omega) we can exclude s−s- and d−d-wave symmetry for the superconducting order parameter. Furthermore, within our analysis and approximations we find that ff-wave symmetry is slightly favored over p-wave symmetry due to the nesting properties of the Fermi surface.Comment: 5 pages, 5 figures, misprints correcte

    Electronic and phononic Raman scattering in detwinned YBa2_2Cu3_3O6.95_{6.95} and Y0.85_{0.85}Ca0.15_{0.15}Ba2_2Cu3_3O6.95_{6.95}: s-wave admixture to the dx2−y2d_{x^2-y^2}-wave order parameter

    Full text link
    Inelastic light (Raman) scattering has been used to study electronic excitations and phonon anomalies in detwinned, slightly overdoped YBa2_2Cu3_3O6.95_{6.95} and moderately overdoped Y0.85_{0.85}Ca0.15_{0.15}Ba2_2Cu3_3O6.95_{6.95} single crystals. In both samples modifications of the electronic pair-breaking peaks when interchanging the a- and b-axis were observed. The lineshapes of several phonon modes involving plane and apical oxygen vibrations exhibit pronounced anisotropies with respect to the incident and scattered light field configurations. Based on a theoretical model that takes both electronic and phononic contributions to the Raman spectra into account, we attribute the anisotropy of the superconductivity-induced changes in the phonon lineshapes to a small s-wave admixture to the dx2−y2d_{x^2-y^2} pair wave-function. Our theory allows us to disentangle the electronic Raman signal from the phononic part and to identify corresponding interference terms. We argue that the Raman spectra are consistent with an s-wave admixture with an upper limit of 20 percent.Comment: accepted in Phys. Rev. B, 11 page

    Lower Extremity Functional Tests and Risk of Injury in Division III Collegiate Athletes

    Full text link
    Purpose/Background: Functional tests have been used primarily to assess an athlete’s fitness or readiness to return to sport. The purpose of this prospective cohort study was to determine the ability of the standing long jump (SLJ) test, the single-leg hop (SLH) for distance test, and the lower extremity functional test (LEFT) as preseason screening tools to identify collegiate athletes who may be at increased risk for a time-loss sports-related low back or lower extremity injury. Methods: A total of 193 Division III athletes from 15 university teams (110 females, age 19.1 ± 1.1 y; 83 males, age 19.5 ± 1.3 y) were tested prior to their sports seasons. Athletes performed the functional tests in the following sequence: SLJ, SLH, LEFT. The athletes were then prospectively followed during their sports season for occurrence of low back or LE injury. Results: Female athletes who completed the LEFT in 118 s were 6 times more likely (OR=6.4, 95% CI: 1.3, 31.7) to sustain a thigh or knee injury. Male athletes who completed the LEFT in 100 s were more likely to experience a time-loss injury to the low back or LE (OR=3.2, 95% CI: 1.1, 9.5) or a foot or ankle injury (OR=6.7, 95% CI: 1.5, 29.7) than male athletes who completed the LEFT in 101 s or more. Female athletes with a greater than 10% side-to-side asymmetry between SLH distances had a 4-fold increase in foot or ankle injury (cut point: \u3e10%; OR=4.4, 95% CI: 1.2, 15.4). Male athletes with SLH distances (either leg) at least 75% of their height had at least a 3-fold increase (OR=3.6, 95% CI: 1.2, 11.2 for the right LE; OR=3.6, 95% CI: 1.2, 11.2 for left LE) in low back or LE injury. Conclusions: The LEFT and the SLH tests appear useful in identifying Division III athletes at risk for a low back or lower extremity sports injury. Thus, these tests warrant further consideration as preparticipatory screening examination tools for sport injury in this population. Clinical Relevance: The single-leg hop for distance and the lower extremity functional test, when administered to Division III athletes during the preseason, may help identify those at risk for a time-loss low back or lower extremity injury

    The Lower-Extremity Functional Test and Lower-Quadrant Injury in NCAA Division III Athletes: A Descriptive and Epidemiologic Report

    Full text link
    Context: The Lower-Extremity Functional Test (LEFT) has been used to assess readiness to return to sport after a lower extremity injury. Current recommendations suggest that women should complete the LEFT in 135 s (average; range 120-150 s) and men should complete the test in 100 s (average; range 90-125 s). However, these estimates are based on limited data and may not be reflective of college athletes. Thus, additional assessment, including normative data, of the LEFT in sport populations is warranted. Objective: To examine LEFT times based on descriptive information and off-season training habits in NCAA Division III (Dill) athletes. In addition, this study prospectively examined the LEFT’S ability to discriminate sport-related injury occurrence. Design: Descriptive epidemiology. Setting: Dill university. Subjects: 189 Dill college athletes (106 women, 83 men) from 15 teams. Main Outcome Measures: LEFT times, preseason questionnaire, and time-loss injuries during the sport season. Results: Men completed the LEFT (105 ± 9 s) significantly faster than their female counterparts (117 ± 10 s) (P \u3c .0001). Female athletes who reported \u3e3-5 h/wk of plyometric training during the off-season had significantly slower LEFT scores than those who performed \u3c3 h/wk of plyometric training (P - -03). The overall incidence of a lower-quadrant (LQ) time-loss injury for female athletes was 4.5/1000 athletic exposures (AEs) and 3.7/1000 AEs for male athletes. Female athletes with slower LEFT scores (\u3e118 s) experienced a higher rate of LQ time-loss injuries than those with faster LEFT scores (\u3c117 s) (P = .03). Conclusion: Only off-season plyometric training practices seem to affect LEFT score times among female athletes. Women with slower LEFT scores are more likely to be injured than those with faster LEFT scores. Injury rates in men were not influenced by performance on the LEFT
    • …
    corecore