2,849 research outputs found
Quantum electrodynamics of chiral waveguide arrays
We consider the quantum electrodynamics of a binary array of chiral
waveguides, each containing many atoms. We show that the one-photon amplitude
of a single-excitation state obeys a two-dimensional Dirac equation. Using this
result, we develop the scattering theory for the Dirac equation in this setting
and illustrate our results with numerical simulations
A fast, high-order numerical method for the simulation of single-excitation states in quantum optics
We consider the numerical solution of a nonlocal partial differential
equation which models the process of collective spontaneous emission in a
two-level atomic system containing a single photon. We reformulate the problem
as an integro-differential equation for the atomic degrees of freedom, and
describe an efficient solver for the case of a Gaussian atomic density. The
problem of history dependence arising from the integral formulation is
addressed using sum-of-exponentials history compression. We demonstrate the
solver on two systems of physical interest: in the first, an initially-excited
atom decays into a photon by spontaneous emission, and in the second, a photon
pulse is used to an excite an atom, which then decays
Hydrodynamic reductions of the heavenly equation
We demonstrate that Pleba\'nski's first heavenly equation decouples in
infinitely many ways into a triple of commuting (1+1)-dimensional systems of
hydrodynamic type which satisfy the Egorov property. Solving these systems by
the generalized hodograph method, one can construct exact solutions of the
heavenly equation parametrized by arbitrary functions of a single variable. We
discuss explicit examples of hydrodynamic reductions associated with the
equations of one-dimensional nonlinear elasticity, linearly degenerate systems
and the equations of associativity.Comment: 14 page
Full density matrix dynamics for large quantum systems: Interactions, Decoherence and Inelastic effects
We develop analytical tools and numerical methods for time evolving the total
density matrix of the finite-size Anderson model. The model is composed of two
finite metal grains, each prepared in canonical states of differing chemical
potential and connected through a single electronic level (quantum dot or
impurity). Coulomb interactions are either excluded all together, or allowed on
the dot only. We extend this basic model to emulate decoherring and inelastic
scattering processes for the dot electrons with the probe technique. Three
methods, originally developed to treat impurity dynamics, are augmented to
yield global system dynamics: the quantum Langevin equation method, the well
known fermionic trace formula, and an iterative path integral approach. The
latter accommodates interactions on the dot in a numerically exact fashion. We
apply the developed techniques to two open topics in nonequilibrium many-body
physics: (i) We explore the role of many-body electron-electron repulsion
effects on the dynamics of the system. Results, obtained using exact path
integral simulations, are compared to mean-field quantum Langevin equation
predictions. (ii) We analyze aspects of quantum equilibration and
thermalization in large quantum systems using the probe technique, mimicking
elastic-dephasing effects and inelastic interactions on the dot. Here, unitary
simulations based on the fermionic trace formula are accompanied by quantum
Langevin equation calculations
Validation of gyrokinetic modelling of light impurity transport including rotation in ASDEX Upgrade
Upgraded spectroscopic hardware and an improved impurity concentration
calculation allow accurate determination of boron density in the ASDEX Upgrade
tokamak. A database of boron measurements is compared to quasilinear and
nonlinear gyrokinetic simulations including Coriolis and centrifugal rotational
effects over a range of H-mode plasma regimes. The peaking of the measured
boron profiles shows a strong anti-correlation with the plasma rotation
gradient, via a relationship explained and reproduced by the theory. It is
demonstrated that the rotodiffusive impurity flux driven by the rotation
gradient is required for the modelling to reproduce the hollow boron profiles
at higher rotation gradients. The nonlinear simulations validate the
quasilinear approach, and, with the addition of perpendicular flow shear,
demonstrate that each symmetry breaking mechanism that causes momentum
transport also couples to rotodiffusion. At lower rotation gradients, the
parallel compressive convection is required to match the most peaked boron
profiles. The sensitivities of both datasets to possible errors is
investigated, and quantitative agreement is found within the estimated
uncertainties. The approach used can be considered a template for mitigating
uncertainty in quantitative comparisons between simulation and experiment.Comment: 19 pages, 11 figures, accepted in Nuclear Fusio
Third-order nonlinear optical properties of stacked bacteriochlorophylls in bacterial photosynthetic light-harvesting proteins
Enhancement of the nonresonant second order molecular hyperpolarizabilities {gamma} were observed in stacked macrocyclic molecular systems, previously in a {micro}-oxo silicon phthalocyanine (SiPcO) monomer, dimer and trimer series, and now in bacteriochlorophyll a (BChla) arrays of light harvesting (LH) proteins. Compared to monomeric BChla in a tetrahydrofuran (THF) solution, the <{gamma}> for each macrocycle was enhanced in naturally occurring stacked macrocyclic molecular systems in the bacterial photosynthetic LH proteins where BChla`s are arranged in tilted face-to-face arrays. In addition, the {gamma} enhancement is more significant in B875 of LH1 than in B850 in LH2. Theoretical modeling of the nonresonant {gamma} enhancement using simplified molecular orbitals for model SiPcO indicated that the energy level of the two photon state is crucial to the {gamma} enhancement when a two photon process is involved, whereas the charge transfer between the monomers is largely responsible when one photon near resonant process is involved. The calculated results can be extended to {gamma} enhancement in B875 and B850 arrays, suggesting that BChla in B875 are more strongly coupled than in B850. In addition, a 50--160 fold increase in <{gamma}> for the S{sub 1} excited state of relative to S{sub 0} of bacteriochlorophyll in vivo was observed which provides an alternative method for probing excited state dynamics and a potential application for molecular switching
Low-Z impurity transport studies using CXRS at ASDEX Upgrade
EUROfusion Consortium 63305
- …