12 research outputs found

    TOI-1135 b: A young hot Saturn-size planet orbiting a solar-type star

    Full text link
    Despite the thousands of planets in orbit around stars known to date, the mechanisms of planetary formation, migration, and atmospheric loss remain unresolved. In this work, we confirm the planetary nature of a young Saturn-size planet transiting a solar-type star every 8.03 d, TOI-1135\,b. The age of the parent star is estimated to be in the interval of 125--1000 Myr based on various activity and age indicators, including its stellar rotation period of 5.13\,±\pm\,0.27 d and the intensity of photospheric lithium. We obtained follow-up photometry and spectroscopy, including precise radial velocity measurements using the CARMENES spectrograph, which together with the TESS data allowed us to fully characterise the parent star and its planet. As expected for its youth, the star is rather active and shows strong photometric and spectroscopic variability correlating with its rotation period. We modelled the stellar variability using Gaussian process regression. We measured the planetary radius at 9.02\,±\pm\,0.23 R_\oplus (0.81\,±\pm\,0.02 RJup_{\mathrm{Jup}}) and determined a 3σ\sigma upper limit of <<\,51.4 M_\oplus (<<\,0.16 \,MJup_{\rm{Jup}}) on the planetary mass by adopting a circular orbit. Our results indicate that TOI-1135\,b is an inflated planet less massive than Saturn or Jupiter but with a similar radius, which could be in the process of losing its atmosphere by photoevaporation. This new young planet occupies a region of the mass-radius diagram where older planets are scarse, and it could be very helpful to understanding the lower frequency of planets with sizes between Neptune and Saturn.Comment: Accepted in A&A. 18 pages, 15 figure

    TOI-1801 b: A temperate mini-Neptune around a young M0.5 dwarf

    Get PDF
    Mallorquín, M., et al.We report the discovery, mass, and radius determination of TOI-1801 b, a temperate mini-Neptune around a young M dwarf. TOI-1801 b was observed in TESS sectors 22 and 49, and the alert that this was a TESS planet candidate with a period of 21.3 days went out in April 2020. However, ground-based follow-up observations, including seeing-limited photometry in and outside transit together with precise radial velocity (RV) measurements with CARMENES and HIRES revealed that the true period of the planet is 10.6 days. These observations also allowed us to retrieve a mass of 5.74 ± 1.46 M⊕, which together with a radius of 2.08 ± 0.12 R⊕, means that TOI-1801 b is most probably composed of water and rock, with an upper limit of 2% by mass of H2 in its atmosphere. The stellar rotation period of 16 days is readily detectable in our RV time series and in the ground-based photometry. We derived a likely age of 600–800 Myr for the parent star TOI-1801, which means that TOI-1801 b is the least massive young mini-Neptune with precise mass and radius determinations. Our results suggest that if TOI-1801 b had a larger atmosphere in the past, it must have been removed by some evolutionary mechanism on timescales shorter than 1 Gyr.This work is partly financed by the Spanish Ministry of Economics and Competitiveness through projects PGC2018-098153-B-C31, PID2019-109522GB-C5[1:4]. E. G. acknowledges the generous support from the Deutsche Forschungsgemeinschaft (DFG) of the grant HA3279/14-1. P.D. acknowledges support from a 51 Pegasi b Postdoctoral Fellowship from the Heising-Simons Foundation. D.H. acknowledges support from the Alfred P. Sloan Foundation, the National Aeronautics and Space Administration (80NSSC21K0652) and the Australian Research Council (FT200100871). This work is partly supported by JSPS KAKENHI Grant Numbers JP18H05439 and JST CREST Grant Number JPMJCR176.Peer reviewe

    Confirmation of an He I evaporating atmosphere around the 650-Myr-old sub-Neptune HD235088 b (TOI-1430 b) with CARMENES

    Get PDF
    HD235088 (TOI-1430) is a young star known to host a sub-Neptune-sized planet candidate. We validated the planetary nature of HD235088 b with multiband photometry, refined its planetary parameters, and obtained a new age estimate of the host star, placing it at 600-800 Myr. Previous spectroscopic observations of a single transit detected an excess absorption of He I coincident in time with the planet candidate transit. Here, we confirm the presence of He I in the atmosphere of HD235088 b with one transit observed with CARMENES. We also detected hints of variability in the strength of the helium signal, with an absorption of -0.91±\pm0.11%, which is slightly deeper (2σ\sigma) than the previous measurement. Furthermore, we simulated the He I signal with a spherically symmetric 1D hydrodynamic model, finding that the upper atmosphere of HD235088 b escapes hydrodynamically with a significant mass loss rate of (1.5-5) ×\times1010^{10}g s1^{-1}, in a relatively cold outflow, with TT=3125±\pm375 K, in the photon-limited escape regime. HD235088 b (RpR_{p} = 2.045±\pm0.075 R_{\oplus}) is the smallest planet found to date with a solid atmospheric detection - not just of He I but any other atom or molecule. This positions it a benchmark planet for further analyses of evolving young sub-Neptune atmospheres.Comment: Accepted for publication in A&A. 17 pages, 18 figure

    Caraguatay - Isla Pucú: encuesta básica de población y salud

    No full text
    Resume los resultados de una encuesta de ciertas características de la población y la salud de los residentes de los distritos de Caraguatay e Isla Pucú, Paraguay. Dicha encuesta se llevó a cabo antes del inicio de las actividades de un proyecto para extender los servicios de atención primaria a través de los maestros rurales. Incluye datos estadísticos

    Light conditions and heterogeneity in illumination affect growth and survival of Octopus vulgaris paralarvae reared in the hatchery

    No full text
    7 pages, 3 tables, 4 figuresIn order to succeed in common octopus (Octopus vulgaris) aquaculture, it is necessary to overcome the massive paralarval mortalities, which are likely related to zootechnical and/or nutritional aspects. Among the zootechnical aspects, the effect of light could be vital for the development of paralarvae given their sophisticated visual system. O. vulgaris paralarvae display vertical behavior in the wild, being in deeper waters during the day and close to the surface at night. For this reason, the present study traces a collection of light assays in captivity, to test ecologically-driven hypotheses on the growth and survival of octopus paralarvae. The first assay tested a factorial combination of light colors (blue vs white) and intensity (low ~13 lx (36 W/m2), medium ~87 lx (151 W/m2) and high ~265 lx (422 W/m2)). The results pointed to a significant negative impact of low light intensities (13 and 87 lx) on paralarval growth. The second assay was designed to contrast light colors (blue vs white), different levels of intensities (300 lx (478 W/m2) vs 600 lx (1077 W/m2)) and partial coverage of the tanks using a shade mesh, named as “shadow zone” (half-covered vs non-covered tanks). In half-covered tanks, survival was significantly improved, with the best results coming from half-covered tanks with blue light and 600 lx, but no differences in dry weight were observed. The third experiment tested a factor called “light source position” with two levels: “Control” when the light incidence angle was 0° with respect to the normal direction (i.e. perpendicular to the water surface), and “Oblique” when the light incidence angle was 60° with respect to the normal direction. In this experiment, survival significantly improved under oblique light but no differences in dry weight were detected. The last experiment was an unifactorial design combining “light source position” and “tank partial coverage” with three treatments: i) control light with uncovered tanks, ii) oblique light with uncovered tanks, iii) control light with semi-covered tanks. Oblique light with uncovered tanks was associated with a higher survival rate but without statistical significance, probably due to data variability. It can be concluded that light intensity tended to affect paralarval dry weight, whereas the existence of a shadow zone or oblique light are more related with an improvement of survival ratesThis study has been supported by the project OCTOWELF (AGL 2013-49101-C2-1-R) funded by the Spanish Government and the COST Action “CephsInAction” (FA1301) funded by the COST programme (EU)Peer reviewe

    Light conditions and heterogeneity in illumination affect growth and survival of Octopus vulgaris paralarvae reared in the hatchery

    No full text
    In order to succeed in common octopus (Octopus vulgaris) aquaculture, it is necessary to overcome the massive paralarval mortalities, which are likely related to zootechnical and/or nutritional aspects. Among the zootechnical aspects, the effect of light could be vital for the development of paralarvae given their sophisticated visual system. O. vulgaris paralarvae display vertical behavior in the wild, being in deeper waters during the day and close to the surface at night. For this reason, the present study traces a collection of light assays in captivity, to test ecologically-driven hypotheses on the growth and survival of octopus paralarvae. The first assay tested a factorial combination of light colors (blue vs white) and intensity (low ~13 lx (36 W/ m2 ), medium ~87 lx (151 W/m2 ) and high ~265 lx (422 W/m2 )). The results pointed to a significant negative impact of low light intensities (13 and 87 lx) on paralarval growth. The second assay was designed to contrast light colors (blue vs white), different levels of intensities (300 lx (478 W/m2 ) vs 600 lx (1077 W/m2 )) and partial coverage of the tanks using a shade mesh, named as “shadow zone” (half-covered vs non-covered tanks). In halfcovered tanks, survival was significantly improved, with the best results coming from half-covered tanks with blue light and 600 lx, but no differences in dry weight were observed. The third experiment tested a factor called “light source position” with two levels: “Control” when the light incidence angle was 0° with respect to the normal direction (i.e. perpendicular to the water surface), and “Oblique” when the light incidence angle was 60° with respect to the normal direction. In this experiment, survival significantly improved under oblique light but no differences in dry weight were detected. The last experiment was an unifactorial design combining “light source position” and “tank partial coverage” with three treatments: i) control light with uncovered tanks, ii) oblique light with uncovered tanks, iii) control light with semi-covered tanks. Oblique light with uncovered tanks was associated with a higher survival rate but without statistical significance, probably due to data variability. It can be concluded that light intensity tended to affect paralarval dry weight, whereas the existence of a shadow zone or oblique light are more related with an improvement of survival rates

    TOI-1135 b: A young hot Saturn-size planet orbiting a solar-type star

    Full text link
    peer reviewedDespite the thousands of planets in orbit around stars known to date, the mechanisms of planetary formation, migration, and atmospheric loss remain unresolved. In this work, we confirm the planetary nature of a young Saturn-size planet transiting a solar-type star every 8.03 d, TOI-1135 b. The age of the parent star is estimated to be in the interval of 125-1000 Myr based on various activity and age indicators, including its stellar rotation period of 5.13 ± 0.27 days and the intensity of photospheric lithium. We obtained follow-up photometry and spectroscopy, including precise radial velocity measurements using the CARMENES spectrograph, which together with the TESS data allowed us to fully characterise the parent star and its planet. As expected for its youth, the star is rather active and shows strong photometric and spectroscopic variability correlating with its rotation period. We modelled the stellar variability using Gaussian process regression. We measured the planetary radius at 9.02 ± 0.23 R⊕ (0.81 ± 0.02 RJup) and determined a 3σ upper limit of ⊕ (Jup) on the planetary mass by adopting a circular orbit. Our results indicate that TOI-1135 b is an inflated planet less massive than Saturn or Jupiter but with a similar radius, which could be in the process of losing its atmosphere by photoevaporation. This new young planet occupies a region of the mass-radius diagram where older planets are scarse, and it could be very helpful to understanding the lower frequency of planets with sizes between Neptune and Saturn

    TOI-4438 b: a transiting mini-Neptune amenable to atmospheric characterization

    No full text
    We report the confirmation and mass determination of a mini-Neptune transiting the M3.5 V star TOI-4438 (G 182-34) every 7.44 days. A transit signal was detected with NASA's TESS space mission in the sectors 40, 52, and 53. In order to validate the planet TOI-4438 b and to determine the system properties, we combined TESS data with high-precision radial velocity measurements from the CARMENES spectrograph, spanning almost one year, and ground-based transit photometry. We found that TOI-4438 b has a radius of R-b = 2.52 +/- 0.13 R-circle plus (5% precision), which together with a mass of M-b = 5.4 +/- 1.1 M-circle plus (20% precision), results in a bulk density of rho(b) = 1.85(-0.44)(+0.51) g cm(-3) (similar to 28% precision), aligning the discovery with a volatile-rich planet. Our interior structure retrieval with a pure water envelope yields aminimum water mass fraction of 46% (1 sigma). TOI-4438 b is a volatile-rich mini-Neptune with likely H/He mixed with molecules, such as water, CO2, and CH4. The primary star has a J-band magnitude of 9.7, and the planet has a high transmission spectroscopy metric (TSM) of 136 +/- 13. Taking into account the relatively warm equilibrium temperature of T-eq = 435 +/- 15 K, and the low activity level of its host star, TOI-4438 b is one of the most promising mini-Neptunes around an M dwarf for transmission spectroscopy studies
    corecore