35,525 research outputs found

    A study of topologies and protocols for fiber optic local area network

    Get PDF
    The emergence of new applications requiring high data traffic necessitates the development of high speed local area networks. Optical fiber is selected as the transmission medium due to its inherent advantages over other possible media and the dual optical bus architecture is shown to be the most suitable topology. Asynchronous access protocols, including token, random, hybrid random/token, and virtual token schemes, are developed and analyzed. Exact expressions for insertion delay and utilization at light and heavy load are derived, and intermediate load behavior is investigated by simulation. A new tokenless adaptive scheme whose control depends only on the detection of activity on the channel is shown to outperform round-robin schemes under uneven loads and multipacket traffic and to perform optimally at light load. An approximate solution to the queueing delay for an oscillating polling scheme under chaining is obtained and results are compared with simulation. Solutions to the problem of building systems with a large number of stations are presented, including maximization of the number of optical couplers, and the use of passive star/bus topologies, bridges and gateways

    On duality of the noncommutative extension of the Maxwell-Chern-Simons model

    Full text link
    We study issues of duality in 3D field theory models over a canonical noncommutative spacetime and obtain the noncommutative extension of the Self-Dual model induced by the Seiberg-Witten map. We apply the dual projection technique to uncover some properties of the noncommutative Maxwell-Chern-Simons theory up to first-order in the noncommutative parameter. A duality between this theory and a model similar to the ordinary self-dual model is estabilished. The correspondence of the basic fields is obtained and the equivalence of algebras and equations of motion are directly verified. We also comment on previous results in this subject.Comment: Revtex, 9 pages, accepted for publication PL

    A Direct Multigrid Poisson Solver for Oct-Tree Adaptive Meshes

    Full text link
    We describe a finite-volume method for solving the Poisson equation on oct-tree adaptive meshes using direct solvers for individual mesh blocks. The method is a modified version of the method presented by Huang and Greengard (2000), which works with finite-difference meshes and does not allow for shared boundaries between refined patches. Our algorithm is implemented within the FLASH code framework and makes use of the PARAMESH library, permitting efficient use of parallel computers. We describe the algorithm and present test results that demonstrate its accuracy.Comment: 10 pages, 6 figures, accepted by the Astrophysical Journal; minor revisions in response to referee's comments; added char

    On the κ\kappa-Dirac Oscillator revisited

    Get PDF
    This Letter is based on the κ\kappa-Dirac equation, derived from the κ\kappa-Poincar\'{e}-Hopf algebra. It is shown that the κ\kappa-Dirac equation preserves parity while breaks charge conjugation and time reversal symmetries. Introducing the Dirac oscillator prescription, ppimωβr\mathbf{p}\to\mathbf{p}-im\omega\beta\mathbf{r}, in the κ\kappa-Dirac equation, one obtains the κ\kappa-Dirac oscillator. Using a decomposition in terms of spin angular functions, one achieves the deformed radial equations, with the associated deformed energy eigenvalues and eigenfunctions. The deformation parameter breaks the infinite degeneracy of the Dirac oscillator. In the case where ε=0\varepsilon=0, one recovers the energy eigenvalues and eigenfunctions of the Dirac oscillator.Comment: 5 pages, no figures, accepted for publication in Physics Letters
    corecore