67 research outputs found

    Nanoanalytical Electron Microscopy Reveals a Sequential Mineralization Process Involving Carbonate-Containing Amorphous Precursors

    Get PDF
    A direct observation and an in-depth characterization of the steps by which bone mineral nucleates and grows in the extracellular matrix during the earliest stages of maturation, using relevant biomineralization models as they grow into mature bone mineral, is an important research goal. To better understand the process of bone mineralization in the extracellular matrix, we used nanoanalytical electron microscopy techniques to examine an in vitro model of bone formation. This study demonstrates the presence of three dominant CaP structures in the mineralizing osteoblast cultures: <80 nm dense granules with a low calcium to phosphate ratio (Ca/P) and crystalline domains; calcium phosphate needles emanating from a focus: “needle-like globules” (100–300 nm in diameter) and mature mineral, both with statistically higher Ca/P compared to that of the dense granules. Many of the submicron granules and globules were interspersed around fibrillar structures containing nitrogen, which are most likely the signature of the organic phase. With high spatial resolution electron energy loss spectroscopy (EELS) mapping, spatially resolved maps were acquired showing the distribution of carbonate within each mineral structure. The carbonate was located in the middle of the granules, which suggested the nucleation of the younger mineral starts with a carbonate-containing precursor and that this precursor may act as seed for growth into larger, submicron-sized, needle-like globules of hydroxyapatite with a different stoichiometry. Application of analytical electron microscopy has important implications in deciphering both how normal bone forms and in understanding pathological mineralization

    Iron-coated Komodo dragon teeth and the complex dental enamel of carnivorous reptiles.

    Get PDF
    Komodo dragons (Varanus komodoensis) are the largest extant predatory lizards and their ziphodont (serrated, curved and blade-shaped) teeth make them valuable analogues for studying tooth structure, function and comparing with extinct ziphodont taxa, such as theropod dinosaurs. Like other ziphodont reptiles, V. komodoensis teeth possess only a thin coating of enamel that is nevertheless able to cope with the demands of their puncture-pull feeding. Using advanced chemical and structural imaging, we reveal that V. komodoensis teeth possess a unique adaptation for maintaining their cutting edges: orange, iron-enriched coatings on their tooth serrations and tips. Comparisons with other extant varanids and crocodylians revealed that iron sequestration is probably widespread in reptile enamels but it is most striking in V. komodoensis and closely related ziphodont species, suggesting a crucial role in supporting serrated teeth. Unfortunately, fossilization confounds our ability to consistently detect similar iron coatings in fossil teeth, including those of ziphodont dinosaurs. However, unlike V. komodoensis, some theropods possessed specialized enamel along their tooth serrations, resembling the wavy enamel found in herbivorous hadrosaurid dinosaurs. These discoveries illustrate unexpected and disparate specializations for maintaining ziphodont teeth in predatory reptiles

    Evidence for Supercurrent Connectivity in Conglomerate Particles in NdFeAsO1-d

    Full text link
    Here we use global and local magnetometry and Hall probe imaging to investigate the electromagnetic connectivity of the superconducting current path in the oxygen-deficient fluorine-free Nd-based oxypnictides. High resolution transmission electron microscopy and scanning electron microscopy show strongly-layered crystallites, evidence for a ~ 5nm amorphous oxide around individual particles, and second phase neodymium oxide which may be responsible for the large paramagnetic background at high field and at high temperatures. From global magnetometry and electrical transport measurements it is clear that there is a small supercurrent flowing on macroscopic sample dimensions (mm), with a lower bound for the average (over this length scale) critical current density of the order of 103 A/cm2. From magnetometry of powder samples and local Hall probe imaging of a single large conglomerate particle ~120 microns it is clear that on smaller scales, there is better current connectivity with a critical current density of the order of 5 x 104 A/cm2. We find enhanced flux creep around the second peak anomaly in the magnetisation curve and an irreversibility line significantly below Hc2(T) as determined by ac calorimetry.Comment: 11 pages, 4 figure

    Characterization of hafnia powder prepared from an oxychloride Sol-Gel

    No full text
    Hafnium-containing compounds are of great importance to the semiconductor industry as a high-Îș gate dielectric to replace silicon oxynitrides. Here, the crystallization processes and chemistry of bulk hafnia powders are investigated, which will aid in interpretation of reactions and crystallization events occurring in thin films used as gate dielectrics. Amorphous hafnia powder was prepared via a sol–gel route using the precursor HfOCl2·H2O. The powders were subjected to various heat treatments and analyzed using X-ray diffraction and thermal analysis techniques. A large change in the crystallization pathway was found to occur when the sample was heated in an inert environment compared with air. Instead of the expected monoclinic phase, tetragonal hafnia also formed under these conditions and was observed up to temperatures of ∌760°C. The tetragonal particles eventually transform into monoclinic hafnia on further heating. Possible mechanisms for the crystallization of tetragonal hafnia are discussed. It is proposed that, in an inert environment, tetragonal hafnia is stabilized due to the presence of oxygen vacancies, formed by the reduction of HfIV to HfIII. As the temperature increases the crystal grows until there are too few oxygen vacancies left in the structure to continue stabilizing the tetragonal phase, and hence transformation to monoclinic hafnia occurs
    • 

    corecore