5,502 research outputs found

    Galaxy correlations and the BAO in a void universe: structure formation as a test of the Copernican Principle

    Get PDF
    A suggested solution to the dark energy problem is the void model, where accelerated expansion is replaced by Hubble-scale inhomogeneity. In these models, density perturbations grow on a radially inhomogeneous background. This large scale inhomogeneity distorts the spherical Baryon Acoustic Oscillation feature into an ellipsoid which implies that the bump in the galaxy correlation function occurs at different scales in the radial and transverse correlation functions. We compute these for the first time, under the approximation that curvature gradients do not couple the scalar modes to vector and tensor modes. The radial and transverse correlation functions are very different from those of the concordance model, even when the models have the same average BAO scale. This implies that if void models are fine-tuned to satisfy average BAO data, there is enough extra information in the correlation functions to distinguish a void model from the concordance model. We expect these new features to remain when the full perturbation equations are solved, which means that the radial and transverse galaxy correlation functions can be used as a powerful test of the Copernican Principle.Comment: 12 pages, 8 figures, matches published versio

    Locally extracting scalar, vector and tensor modes in cosmological perturbation theory

    Full text link
    Cosmological perturbation theory relies on the decomposition of perturbations into so-called scalar, vector and tensor modes. This decomposition is non-local and depends on unknowable boundary conditions. The non-locality is particularly important at second- and higher-order because perturbative modes are sourced by products of lower-oder modes, which must be integrated over all space in order to isolate each mode. However, given a trace-free rank-2 tensor, a locally defined scalar mode may be trivially derived by taking two divergences, which knocks out the vector and tensor degrees of freedom. A similar local differential operation will return a pure vector mode. This means that scalar and vector degrees of freedom have local descriptions. The corresponding local extraction of the tensor mode is unknown however. We give it here. The operators we define are useful for defining gauge-invariant quantities at second-order. We perform much of our analysis using an index-free `vector-calculus' approach which makes manipulating tensor equations considerably simpler.Comment: 13 pages. Final version to appear in CQ

    Roulettes: A weak lensing formalism for strong lensing — II. Derivation and analysis —

    Get PDF
    We present a new extension of the weak lensing formalism capable of describing strongly lensed images. This paper accompanies Paper I, arXiv:1603.04698 where we provided a condensed overview of the approach and illustrated how it works. Here we give all the necessary details, together with some more explicit examples. We solve the non-linear geodesic deviation equation order-by-order, keeping the leading derivatives of the optical tidal matrix, giving rise to a series of maps from which a complete strongly lensed image is formed. The family of maps are decomposed by separating the trace and trace-free parts of each map. Each trace-free tensor represents an independent spin mode, which distort circles into a variety of roulettes in the screen-space. It is shown how summing this series expansion allows us to create large strongly lensed images in regions where convergence, shear and flexion are not sufficient. This paper is a detailed exposition of Paper I which presents the key elements of the subject matter in a wider context.Comment: 25 pages, 9 pages. v3 has minor changes to match published version. Paper I available at arXiv:1603.0469

    Ultra-broadband wavelength-swept Tm-doped fiber laser using wavelength-combined gain stages

    Get PDF
    A wavelength-swept thulium-doped fiber laser system employing two parallel cavities with two different fiber gain stages is reported. The fiber gain stages were tailored to provide emission in complementary bands with external wavelength-dependent feedback cavities sharing a common rotating polygon mirror for wavelength scanning. The wavelength-swept laser outputs from the fiber gain elements were spectrally combined by means of a dichroic mirror and yielded over 500 mW of output with a scanning range from ~1740 nm to ~2070 nm for a scanning frequency of ~340 Hz

    A functional analysis of change propagation

    Get PDF
    A thorough understanding of change propagation is fundamental to effective change management during product redesign. A new model of change propagation, as a result of the interaction of form and function is presented and used to develop an analysis method that determines how change is likely to propagate. The analysis produces a Design Structure Matrix, which clearly illustrates change propagation paths and highlights connections that could otherwise be ignored. This provides the user with an in-depth knowledge of product connectivity, which has the potential to support the design process and reduce the product's susceptibility to future change
    • …
    corecore