82 research outputs found

    The impact of new research technologies on our understanding of environmental causes of disease: the concept of clinical vulnerability

    Get PDF
    In spite of decades of epidemiological research, the etiology and causal patterns for many common diseases, such as breast and colon cancer or neurodegenerative diseases, are still largely unknown. Such chronic diseases are likely to have an environmental origin. However, "environmental" risks have been often elusive in epidemiological studies. This is a conundrum for current epidemiological research. On the other side, the relative contribution of genes to chronic diseases, as emerging from GWAS, seems to be modest (15-50% increase in disease risk). What is yet to be explored extensively is a model of disease based on long-term effects of low doses of environmental exposures, incorporating both genetic and acquired susceptibility ("clinical vulnerability"), and the cumulative effects of different exposures. Such a disease model would be compatible with the weak associations found by GWAS and the still elusive role of many (low-level) environmental exposures. We also propose that the introduction of "-omic" high-throughput technologies, such as transcriptomics, proteomics and metabolomics, may provide, in the next years, powerful tools to investigate early effects of environmental exposures and understand the etiology of common diseases better, according to the "clinical vulnerability model". The development of "-omics", in spite of current limitations and lack of sound validation, could greatly contribute to the elucidation of the disease model we propose

    Anti–Neutrophil Extracellular Trap Antibodies in Antiphospholipid Antibody–Positive Patients: Results From the Antiphospholipid Syndrome Alliance for Clinical Trials and InternatiOnal Networking Clinical Database and Repository

    Get PDF
    OBJECTIVE: This study aimed to elucidate the presence, antigen specificities, and potential clinical associations of anti–neutrophil extracellular trap (anti-NET) antibodies in a multinational cohort of antiphospholipid (aPL) antibody–positive patients who did not have lupus. METHODS: Anti-NET IgG/IgM levels were measured in serum samples from 389 aPL-positive patients; 308 patients met the classification criteria for antiphospholipid syndrome. Multivariate logistic regression with best variable model selection was used to determine clinical associations. For a subset of the patients (n = 214), we profiled autoantibodies using an autoantigen microarray platform. RESULTS: We found elevated levels of anti-NET IgG and/or IgM in 45% of the aPL-positive patients. High anti-NET antibody levels are associated with more circulating myeloperoxidase (MPO)–DNA complexes, which are a biomarker of NETs. When considering clinical manifestations, positive anti-NET IgG was associated with lesions affecting the white matter of the brain, even after adjusting for demographic variables and aPL profiles. Anti-NET IgM tracked with complement consumption after controlling for aPL profiles; furthermore, patient serum samples containing high levels of anti-NET IgM efficiently deposited complement C3d on NETs. As determined by autoantigen microarray, positive testing for anti-NET IgG was significantly associated with several autoantibodies, including those recognizing citrullinated histones, heparan sulfate proteoglycan, laminin, MPO–DNA complexes, and nucleosomes. Anti-NET IgM positivity was associated with autoantibodies targeting single-stranded DNA, double-stranded DNA, and proliferating cell nuclear antigen. CONCLUSION: These data reveal high levels of anti-NET antibodies in 45% of aPL-positive patients, where they potentially activate the complement cascade. While anti-NET IgM may especially recognize DNA in NETs, anti-NET IgG species appear to be more likely to target NET-associated protein antigens

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Pharmacological impairment of s-nitrosoglutathione or thioredoxin reductases augments protein S-Nitrosation in human hepatocarcinoma cells

    No full text
    BACKGROUND/AIM: S-Nitrosoglutathione reductase (GSNOR) and thioredoxin enzyme systems participate in cellular defence against nitrosative stress. Pharmacological interventions against these enzyme systems might represent valuable strategies to impair S-nitrosothiol (SNO) homeostasis in tumour cells. MATERIALS AND METHODS: Human HepG2 cells were pre-treated with mithramycin A or auranofin and exposed to S-nitroso-L-cysteine. GSNOR mRNA levels were analyzed by quantitative real-time reverse transcriptase-polymerase chain reaction and S-nitrosated proteins were detected and purified using the biotin-switch approach. Proteins were identified using electrospray ionization tandem mass spectrometry. RESULTS: Mithramycin interfered with GSNOR induction resulting in an increased cellular sensitivity to protein S-nitrosation. Moreover, the thioredoxin reductase inhibitor auranofin also increased cellular susceptibility to S-nitrosoprotein formation. The impairment of these two cellular defense systems against nitrosative stress resulted in different sets of S-nitrosated proteins, as revealed by the proteomics approach. CONCLUSION: Our results suggest that pharmacological intervention with mithramycin or auranofin may constitute promising tools for altering SNO homeostasis in tumour cells

    Circulating microRNAs as potential biomarkers of disease activity and structural damage in ankylosing spondylitis patients.

    No full text
    Ankylosing spondylitis (AS) remains difficult to diagnose before irreversible damage to sacroiliac joint is noticeable. Circulating microRNAs have demonstrated to serve as diagnostic tools for several human diseases. Here, we analysed plasma microRNAs to identify potential AS biomarkers. Higher expression levels of microRNA (miR)-146a-5p, miR-125a-5p, miR-151a-3p and miR-22-3p, and lower expression of miR-150-5p, and miR-451a were found in AS versus healthy donors. Interestingly, higher miR-146a-5p, miR-125a-5p, miR-151a-3p, miR-22-3p and miR-451a expression was also observed in AS than psoriatic arthritis patients. The areas under the curve, generated to assess the accuracy of microRNAs as diagnostic biomarkers for AS, ranged from 0.614 to 0.781; the six-microRNA signature reached 0.957. Bioinformatics analysis revealed that microRNAs targeted inflammatory and bone remodeling genes, underlying their potential role in this pathology. Indeed, additional studies revealed an association between these six microRNAs and potential target proteins related to AS pathophysiology. Furthermore, miR-146a-5p, miR-125a-5p and miR-22-3p expression was increased in active versus non-active patients. Moreover, miR-125a-5p, miR-151a-3p, miR-150-5p and miR-451a expression was related to the presence of syndesmophytes in AS patients. Overall, this study identified a six-plasma microRNA signature that could be attractive candidates as non-invasive biomarkers for the AS diagnosis, and may help to elucidate the disease pathogenesis
    corecore