247 research outputs found
Direct calorimetric measurements of isothermal entropy change on single crystal W-type hexaferrites at the spin reorientation transition
We report on the magnetic field induced isothermal entropy change, \Delta
s(Ha, T), of W-type ferrite with CoZn substitution. Entropy measurements are
performed by direct calorimetry. Single crystals of the composition
BaCoZnFeO, prepared by the flux method, are measured at
different fixed temperatures under an applied field perpendicular and parallel
to the c axis. At 296 K one deduces a value of K = 8.7 \times 10^{4} J
m for the first anisotropy constant, which is in good agreement with the
literature. The spin reorientation transition temperature is estimated to take
place between 200 and 220 K
Magnetization reversal in exchange-spring bilayer system under circularly polarized microwave field
Microwave assisted magnetization reversal are studied in the bulk bilayer
exchange coupled system. We investigate the nonlinear magnetization reversal
dynamics in a perpendicular exchange spring media using Landau-Lifshitz
equation. In the limit of the infinite thickness of the system, the propagation
field leads the reversal of the system. The reduction of the switching field
and the magnetization profile in the extended system are studied numerically.
The possibility to study the dynamics analytically is discussed and an
approximation where two P-modes are coupled by an interaction field is
presented. The ansatz used for the interaction field is validated by comparison
with the numerical results. This approach is shown to be equivalent to two
exchange coupled macrospins
Mid-Atlantic Wind - Overcoming the Challenges
This study, supported by the US Department of Energy, Wind Powering America Program, Maryland Department of Natural Resources and Chesapeake Bay Foundation, analyzed barriers to wind energy development in the Mid-Atlantic region along with options for overcoming or mitigating them. The Mid-Atlantic States including Delaware, Maryland, North Carolina and Virginia, have excellent wind energy potential and growing demand for electricity, but only two utility-scale projects have been installed to date. Reasons for this apathetic development of wind resources were analyzed and quantified for four markets. Specific applications are: 1) Appalachian mountain ridgeline sites, 2) on coastal plains and peninsulas, 3) at shallow water sites in Delaware and Chesapeake Bays, Albemarle and Pamlico Sounds, and 4) at deeper water sites off the Atlantic coast. Each market has distinctly different opportunities and barriers. The primary barriers to wind development described in this report can be grouped into four categories; state policy and regulatory issues, wind resource technical uncertainty, economic viability, and public interest in environmental issues. The properties of these typologies are not mutually independent and do interact. The report concluded that there are no insurmountable barriers to land-based wind energy projects and they could be economically viable today. Likewise potential sites in sheltered shallow waters in regional bay and sounds have been largely overlooked but could be viable currently. Offshore ocean-based applications face higher costs and technical and wind resource uncertainties. The ongoing research and development program, revision of state incentive policies, additional wind measurement efforts, transmission system expansion, environmental baseline studies and outreach to private developers and stakeholders are needed to reduce barriers to wind energy development
The influence of color on snake detection in visual search in human children
It is well known that adult humans detect snakes as targets more quickly than flowers as the targets and that how rapidly they detect a snake picture does not differ whether the images are in color or gray-scale, whereas they find a flower picture more rapidly when the images are in color than when the images are gray-scale. In the present study, a total of 111 children were presented with 3-by-3 matrices of images of snakes and flowers in either color or gray-scale displays. Unlike the adults reported on previously, the present participants responded to the target faster when it was in color than when it was gray-scale, whether the target was a snake or a flower, regardless of their age. When detecting snakes, human children appear to selectively attend to their color, which would contribute to the detection being more rapidly at the expense of its precision
Complexing the Marine Sesquiterpene Euplotin C by Means of Cyclodextrin-Based Nanosponges: A Preliminary Investigation
Euplotin C is a sesquiterpene of marine origin endowed with significant anti-microbial and anti-tumor properties. Despite the promising functional profile, its progress as a novel drug candidate has failed so far, due to its scarce solubility and poor stability in aqueous media, such as biological fluids. Therefore, overcoming these limits is an intriguing challenge for the scientific community. In this work, we synthesized β-cyclodextrin-based nanosponges and investigated their use as colloidal carriers for stably complex euplotin C. Results obtained proved the ability of the carrier to include the natural compound, showing remarkable values of both loading efficiency and capacity. Moreover, it also allowed us to preserve the chemical structure of the loaded compound, which was recovered unaltered once extracted from the complex. Therefore, the use of β-cyclodextrin-based nanosponges represents a viable option to vehiculate euplotin C, thus opening up its possible use as pharmacologically active compound
Mastering disorder in a first-order transition by ion irradiation
The effect of ion bombardment on MnAs single crystalline thin films is
studied. The role of elastic collisions between ions and atoms of the material
is singled-out as the main process responsible for modifying the properties of
the material. Thermal hysteresis suppression, and the loss of sharpness of the
magneto-structural phase transition are studied as a function of different
irradiation conditions. While the latter is shown to be associated with the ion
induced disorder at the scale of the transition correlation length, the former
is related to the coupling between disorder and the large-scale elastic field
associated with the phase coexistence pattern
Magnetic Behavior of a Mixed Ising Ferrimagnetic Model in an Oscillating Magnetic Field
The magnetic behavior of a mixed Ising ferrimagnetic system on a square
lattice, in which the two interpenetrating square sublattices have spins +- 1/2
and spins +-1,0, in the presence of an oscillating magnetic field has been
studied with Monte Carlo techniques. The model includes nearest and
next-nearest neighbor interactions, a crystal field and the oscillating
external field. By studying the hysteretic response of this model to an
oscillating field we found that it qualitatively reproduces the increasing of
the coercive field at the compensation temperature observed in real
ferrimagnets, a crucial feature for magneto-optical applications. This behavior
is basically independent of the frequency of the field and the size of the
system. The magnetic response of the system is related to a dynamical
transition from a paramagnetic to a ferromagnetic phase and to the different
temperature dependence of the relaxation times of both sublattices.Comment: 10 figures. To be published in Phys.Rev
Mechanisms of GII.4 Norovirus Persistence in Human Populations
Noroviruses are the leading cause of viral acute gastroenteritis in humans, noted for causing epidemic outbreaks in communities, the military, cruise ships, hospitals, and assisted living communities. The evolutionary mechanisms governing the persistence and emergence of new norovirus strains in human populations are unknown. Primarily organized by sequence homology into two major human genogroups defined by multiple genoclusters, the majority of norovirus outbreaks are caused by viruses from the GII.4 genocluster, which was first recognized as the major epidemic strain in the mid-1990s. Previous studies by our laboratory and others indicate that some noroviruses readily infect individuals who carry a gene encoding a functional alpha-1,2-fucosyltransferase (FUT2) and are designated “secretor-positive” to indicate that they express ABH histo-blood group antigens (HBGAs), a highly heterogeneous group of related carbohydrates on mucosal surfaces. Individuals with defects in the FUT2 gene are termed secretor-negative, do not express the appropriate HBGA necessary for docking, and are resistant to Norwalk infection. These data argue that FUT2 and other genes encoding enzymes that regulate processing of the HBGA carbohydrates function as susceptibility alleles. However, secretor-negative individuals can be infected with other norovirus strains, and reinfection with the GII.4 strains is common in human populations. In this article, we analyze molecular mechanisms governing GII.4 epidemiology, susceptibility, and persistence in human populations
- …