5,804,943 research outputs found

    Electron energy-loss spectrometry on lithiated graphite

    Get PDF
    Transmission electron energy-loss spectrometry was used to investigate the electronic states of metallic Li and LiC6, which is the Li-intercalated graphite used in Li-ion batteries. The Li K edges of metallic Li and LiC6 were nearly identical, and the C K edges were only weakly affected by the presence of Li. These results suggest only a small charge transfer from Li to C in LiC6, contrary to prior results from surface spectra obtained by x-ray photoelectron spectroscopy. Effects of radiation damage and sample oxidation in the transmission electron microscopy are also reported

    MgB2 single crystals substituted with Li and with Li-C: Structural and superconducting properties

    Full text link
    The effect of Li substitution for Mg and of Li-C co-substitution on the superconducting properties and crystal structure of MgB2 single crystals has been investigated. It has been found that hole doping with Li decreases the superconducting transition temperature Tc, but at a slower rate than electron doping with C or Al. Tc of MgB2 crystals with simultaneously substituted Li for Mg and C for B decreases more than in the case where C is substituted alone. This means that holes introduced by Li cannot counterbalance the effect of decrease of Tc caused by introduction of electrons coming from C. The possible reason of it can be that holes coming from Li occupy the pi band while electrons coming from C fill the sigma band. The temperature dependences of the upper critical field Hc2 for Al and Li substituted crystals with the same Tc show a similar dHc2/dT slope at Tc and a similar Hc2(T) behavior, despite of much different substitution level. This indicates that the mechanism controlling Hc2 and Tc is similar in both hole and electron doped crystals. Electrical transport measurements show an increase of resistivity both in Li substituted crystals and in Li and C co-substituted crystals. This indicates enhanced scattering due to defects introduced by substitutions including distortion of the lattice. The observed behavior can be explained as a result of two effects, influencing both Tc and Hc2. The first one is doping related to the changes in the carrier concentration, which may lead to the decrease or to the increase of Tc. The second one is related to the introduction of new scattering centers leading to the modification of the interband and/or intraband scattering and therefore, to changes in the superconducting gaps and to the reduction of Tc.Comment: 22 pages, 17 figures, submitted to PR

    Assessing carbon-based anodes for lithium-ion batteries: A universal description of charge-transfer binding

    Full text link
    Many key performance characteristics of carbon-based lithium-ion battery anodes are largely determined by the strength of binding between lithium (Li) and sp2 carbon (C), which can vary significantly with subtle changes in substrate structure, chemistry, and morphology. Here, we use density functional theory calculations to investigate the interactions of Li with a wide variety of sp2 C substrates, including pristine, defective, and strained graphene; planar C clusters; nanotubes; C edges; and multilayer stacks. In almost all cases, we find a universal linear relation between the Li-C binding energy and the work required to fill previously unoccupied electronic states within the substrate. This suggests that Li capacity is predominantly determined by two key factors -- namely, intrinsic quantum capacitance limitations and the absolute placement of the Fermi level. This simple descriptor allows for straightforward prediction of the Li-C binding energy and related battery characteristics in candidate C materials based solely on the substrate electronic structure. It further suggests specific guidelines for designing more effective C-based anodes. The method should be broadly applicable to charge-transfer adsorption on planar substrates, and provides a phenomenological connection to established principles in supercapacitor and catalyst design.Comment: accepted by Physical Review Letter

    Spectroscopic Study of IRAS 19285+0517(PDS 100): A Rapidly Rotating Li-Rich K Giant

    Get PDF
    We report on photometry and high-resolution spectroscopy for IRAS 19285+0517. The spectral energy distribution based on visible and near-IR photometry and far-IR fluxes shows that the star is surrounded by dust at a temperature of TdT_{\rm {d}} \sim 250 K. Spectral line analysis shows that the star is a K giant with a projected rotational velocity vsiniv sin i = 9 ±\pm 2 km s1^{-1}. We determined the atmospheric parameters: TeffT_{\rm {eff}} = 4500 K, log gg = 2.5, ξt\xi_{t} = 1.5 km s1^{-1}, and [Fe/H] = 0.14 dex. The LTE abundance analysis shows that the star is Li-rich (log ϵ\epsilon(Li) = 2.5±\pm0.15), but with essentially normal C, N, and O, and metal abundances. Spectral synthesis of molecular CN lines yields the carbon isotopic ratio 12^{12}C/13^{13}C = 9 ±\pm3, a signature of post-main sequence evolution and dredge-up on the RGB. Analysis of the Li resonance line at 6707 \AA for different ratios 6^{6}Li/7^{7}Li shows that the Li profile can be fitted best with a predicted profile for pure 7^{7}Li. Far-IR excess, large Li abundance, and rapid rotation suggest that a planet has been swallowed or, perhaps, that an instability in the RGB outer layers triggered a sudden enrichment of Li and caused mass-loss.Comment: To appear in AJ; 40 pages, 9 figure

    Three Li-rich K giants: IRAS 12327-6523, IRAS 13539-4153, and IRAS 17596-3952

    Full text link
    We report on spectroscopic analyses of three K giants previously suggested to be Li-rich: IRAS 12327-6523, IRAS 13539-4153, and IRAS 17596-3952. High-resolution optical spectra and the LTE model atmospheres are used to derive the stellar parameters: (TeffT_{\rm eff}, log gg, [Fe/H]), elemental abundances, and the isotopic ratio 12^{12}C/13^{13}C. IRAS 13539-4153 shows an extremely high Li abundance of logϵ\log\epsilon(Li) \approx 4.2, a value ten times more than the present Li abundance in the local interstellar medium. This is the third highest Li abundance yet reported for a K giant. IRAS 12327-6523 shows a Li abundances of logϵ\log\epsilon(Li)\approx 1.4. IRAS 17596-3952 is a rapidly rotating (VsiniV{\sin i} \approx 35 km s1^{-1}) K giant with logϵ\log\epsilon(Li) \approx 2.2. Infrared photometry which shows the presence of an IR excess suggesting mass-loss. A comparison is made between these three stars and previously recognized Li-rich giants.Comment: 17 pages, 6 figures, accepted for A

    A study of the proton spectra following the capture of KK^- in 6^6Li and 12^{12}C with FINUDA

    Get PDF
    Momenta spectra of protons emitted following the capture of KK^- in 6^6Li and 12^{12}C have been measured with 1% resolution. The 12^{12}C spectrum is smooth whereas for 6^6Li a well defined peak appears at about 500 MeV/cc. The first observation of a structure in this region was identified as a strange tribaryon or, possibly, a Kˉ\bar K-nuclear state. The peak is correlated with a π\pi^- coming from Σ\Sigma^- decay in flight, selected by setting momenta larger than 275 MeV/cc. The Σ\Sigma^- could be produced, together with a 500 MeV/cc proton, by the capture of a KK^- in a deuteron-cluster substructure of the 6^6Li nucleus. The capture rate for such a reaction is (1.62\pm 0.23_{stat} ^{+0.71}_{-0.44}(sys))%/K^-_{stop}, in agreement with the existing observations on 4^4He targets and with the hypothesis that the 6^6Li nucleus can be interpreted as a (d+α)(d+\alpha) cluster.Comment: 21 pages, 10 figures. Accepted for publication in NP
    corecore