24 research outputs found

    Peroxisome proliferators-activated alpha agonist treatment ameliorates hepatic damage in rats with obstructive jaundice: an experimental study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Peroxisome proliferators-activated receptor alpha (PPARα) activation modulates cholesterol metabolism and suppresses bile acid synthesis. This study aims to evaluate the effect of short-term administration of fenofibrate, a PPARα agonist, on proinflammatory cytokines, apoptosis, and hepatocellular damage in cholestasis.</p> <p>Methods</p> <p>Forty male Wistar rats were randomly divided into four groups: I = sham operated, II = bile duct ligation (BDL), III = BDL + vehicle (gum Arabic), IV = BDL + fenofibrate (100 mg/kg/day). All rats were sacrificed on 7<sup>th </sup>day after obtaining blood samples and liver tissue. Total bilirubin, aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP), gamma-glutamyl transferase, (GGT), tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1 β), and total bile acid (TBA) in serum, and liver damage scores; portal inflammation, necrosis, bile duct number, in liver tissue were evaluated. Apoptosis in liver was also assessed by immunohistochemical staining.</p> <p>Results</p> <p>Fenofibrate administration significantly reduced serum total bilirubin, AST, ALT, ALP, and GGT, TNF-α, IL-1 β levels, and TBA (<it>P </it>< 0.01). Hepatic portal inflammation, hepatic necrosis, number of the bile ducts and apoptosis in rats with BDL were more prominent than the sham-operated animals (<it>P </it>< 0.01). PPARα induction improved all histopathologic parameters (<it>P </it>< 0.01), except for the number of the bile duct, which was markedly increased by fenofibrate therapy (<it>P </it>< 0.01).</p> <p>Conclusion</p> <p>Short-term administration of fenofibrate to the BDL rats exerts beneficial effects on hepatocellular damage and apoptosis.</p

    Transforming Growth Factor-β1 Suppresses Hepatitis B Virus Replication by the Reduction of Hepatocyte Nuclear Factor-4α Expression

    Get PDF
    Several studies have demonstrated that cytokine-mediated noncytopathic suppression of hepatitis B virus (HBV) replication may provide an alternative therapeutic strategy for the treatment of chronic hepatitis B infection. In our previous study, we showed that transforming growth factor-beta1 (TGF-β1) could effectively suppress HBV replication at physiological concentrations. Here, we provide more evidence that TGF-β1 specifically diminishes HBV core promoter activity, which subsequently results in a reduction in the level of viral pregenomic RNA (pgRNA), core protein (HBc), nucleocapsid, and consequently suppresses HBV replication. The hepatocyte nuclear factor 4alpha (HNF-4α) binding element(s) within the HBV core promoter region was characterized to be responsive for the inhibitory effect of TGF-β1 on HBV regulation. Furthermore, we found that TGF-β1 treatment significantly repressed HNF-4α expression at both mRNA and protein levels. We demonstrated that RNAi-mediated depletion of HNF-4α was sufficient to reduce HBc synthesis as TGF-β1 did. Prevention of HNF-4α degradation by treating with proteasome inhibitor MG132 also prevented the inhibitory effect of TGF-β1. Finally, we confirmed that HBV replication could be rescued by ectopic expression of HNF-4α in TGF-β1-treated cells. Our data clarify the mechanism by which TGF-β1 suppresses HBV replication, primarily through modulating the expression of HNF-4α gene

    A Cryptic Frizzled Module in Cell Surface Collagen 18 Inhibits Wnt/β−Catenin Signaling

    Get PDF
    Collagens contain cryptic polypeptide modules that regulate major cell functions, such as cell proliferation or death. Collagen XVIII (C18) exists as three amino terminal end variants with specific amino terminal polypeptide modules. We investigated the function of the variant 3 of C18 (V3C18) containing a frizzled module (FZC18), which carries structural identity with the extracellular cysteine-rich domain of the frizzled receptors. We show that V3C18 is a cell surface heparan sulfate proteoglycan, its topology being mediated by the FZC18 module. V3C18 mRNA was expressed at low levels in 21 normal adult human tissues. Its expression was up-regulated in fibrogenesis and in small well-differentiated liver tumors, but decreased in advanced human liver cancers. Low FZC18 immunostaining in liver cancer nodules correlated with markers of high Wnt/β−catenin activity. V3C18 (Mr = 170 kD) was proteolytically processed into a cell surface FZC18-containing 50 kD glycoprotein precursor that bound Wnt3a in vitro through FZC18 and suppressed Wnt3a-induced stabilization of β−catenin. Ectopic expression of either FZC18 (35 kD) or its 50 kD precursor inhibited Wnt/β−catenin signaling in colorectal and liver cancer cell lines, thus downregulating major cell cycle checkpoint gatekeepers cyclin D1 and c-myc and reducing tumor cell growth. By contrast, full-length V3C18 was unable to inhibit Wnt signaling. In summary, we identified a cell-surface signaling pathway whereby FZC18 inhibits Wnt/β−catenin signaling. The signal, encrypted within cell-surface C18, is released by enzymatic processing as an active frizzled cysteine-rich domain (CRD) that reduces cancer cell growth. Thus, extracellular matrix controls Wnt signaling through a collagen-embedded CRD behaving as a cell-surface sensor of proteolysis, conveying feedback cues to control cancer cell fate

    The GABAergic system: a possible component of estrogenic feedback on gonadotropin secretion in rainbow trout (Oncorhynchus mykiss)

    No full text
    In teleost fish, GTH secretion is controlled by a large number of neuroendocrine factors at the central level and steroid feedback represents an efficient process to synchronize the activity of all the systems involved along the brain-pituitary-gonad axis. Estrogen effects are mediated by specific nuclear receptors that act as transcription factors to regulate the expression of target genes. In order to understand the neuroendocrine mechanisms involved in the estrogen feedback on GTH secretion, we need, as a first step, to know the nature of target cells at the pituitary and central levels. In rainbow trout, some estrogen receptors expressing cells are identified but the nature of a large number of them remains unknown. In this paper, we explain our strategy to identify the central target of estrogen using both in situ hybridization and immunohistochemistry. We focused our attention on GABA neurons of which the distribution, in some central areas, exactly overlaps with that of estrogen receptors expressing cells

    Effects of peroxisome proliferator-activated receptor alpha activation on pathways contributing to cholesterol homeostasis in rat hepatocytes

    No full text
    International audiencePeroxisome proliferator-activated receptor alpha (PPARa) activation by fibrates controls expression of several genes involved in hepatic cholesterol metabolism. Other genes could be indirectly controlled in response to changes in cellular cholesterol availability. To further understand how fibrates may affect cholesterol synthesis, we investigated in parallel the changes in the metabolic pathways contributing to cholesterol homeostasis in liver. Ciprofibrate increased HMG-CoA reductase and FPP synthase mRNA levels in rat hepatocytes, together with cholesterogenesis from [14C] acetate and [3H] mevalonate. The up-regulation observed in fenofibrate- and WY-14,643-treated mice was abolished in PPARa-null mice, showing an essential role of PPAR a. Among the three sterol regulatory element-binding protein (SREBP) mRNA species, only SREBP-1c level was significantly increased. In ciprofibrate-treated hepatocytes, cholesterol efflux was decreased, in parallel with cholesteryl ester storage and bile acids synthesis. As expected, AOX expression was strongly induced, supporting evidence of the peroxisome proliferation. Taken together, these results show that fibrates can cause cholesterol depletion in hepatocytes, possibly in part as a consequence of an important requirement of cholesterol for peroxisome proliferation, and increase cholesterogenesis by a compensatory phenomenon afterwards. Such cholesterogenesis regulation could occur in vivo, in species responsive to the peroxisome proliferative effect of PPARa ligands

    Caspase-2, a Novel Lipid Sensor under the Control of Sterol Regulatory Element Binding Protein 2

    No full text
    Caspases play important roles in apoptotic cell death and in some other functions, such as cytokine maturation, inflammation, or differentiation. We show here that the 5′-flanking region of the human CASP-2 gene contains three functional response elements for sterol regulatory element binding proteins (SREBPs), proteins that mediate the transcriptional activation of genes involved in cholesterol, triacylglycerol, and fatty acid synthesis. Exposure of several human cell lines to statins, lipid-lowering drugs that drive SREBP proteolytic activation, induced the CASP-2 gene to an extent similar to that for known targets of SREBP proteins. Adenoviral vector-mediated transfer of active SREBP-2 also induced expression of the CASP-2 gene and the caspase-2 protein and increased the cholesterol and triacylglycerol cellular content. These rises in lipids were strongly impaired following small interfering RNA-mediated silencing of the CASP-2 gene. Taken together, our results identify the human CASP-2 gene as a member of the SREBP-responsive gene battery that senses lipid levels in cells and raise the possibility that caspase-2 participates in the control of cholesterol and triacylglycerol levels
    corecore