701 research outputs found

    Chaotic Properties of Dilute Two and Three Dimensional Random Lorentz Gases I: Equilibrium Systems

    Full text link
    We compute the Lyapunov spectrum and the Kolmogorov-Sinai entropy for a moving particle placed in a dilute, random array of hard disk or hard sphere scatterers - i.e. the dilute Lorentz gas model. This is carried out in two ways: First we use simple kinetic theory arguments to compute the Lyapunov spectrum for both two and three dimensional systems. In order to provide a method that can easily be generalized to non-uniform systems we then use a method based upon extensions of the Lorentz-Boltzmann (LB) equation to include variables that characterize the chaotic behavior of the system. The extended LB equations depend upon the number of dimensions and on whether one is computing positive or negative Lyapunov exponents. In the latter case the extended LB equation is closely related to an "anti-Lorentz-Boltzmann equation" where the collision operator has the opposite sign from the ordinary LB equation. Finally we compare our results with computer simulations of Dellago and Posch and find very good agreement.Comment: 48 pages, 3 ps fig

    Aging in a simple glassformer

    Full text link
    Using molecular dynamics computer simulations we investigate the out-of-equilibrium dynamics of a Lennard-Jones system after a quench from a high temperature to one below the glass transition temperature. By studying the radial distribution function we give evidence that during the aging the system is very close to the critical surface of mode-coupling theory. Furthermore we show that two-time correlation functions show a strong dependence on the waiting time since the quench and that their shape is very different from the one in equilibrium. By investigating the temperature and time dependence of the frequency distribution of the normal modes we show that the energy of the inherent structures can be used to define an effective (time dependent) temperature of the aging system.Comment: Talk presented at ``Unifying Concepts in Glass Physics'', ICTP, Trieste 15 - 18 September 1999; 12 pages of Late

    Light scattering spectra of supercooled molecular liquids

    Full text link
    The light scattering spectra of molecular liquids are derived within a generalized hydrodynamics. The wave vector and scattering angle dependences are given in the most general case and the change of the spectral features from liquid to solidlike is discussed without phenomenological model assumptions for (general) dielectric systems without long-ranged order. Exact microscopic expressions are derived for the frequency-dependent transport kernels, generalized thermodynamic derivatives and the background spectra.Comment: 12 page

    Molecular mode-coupling theory for supercooled liquids: Application to water

    Full text link
    We present mode-coupling equations for the description of the slow dynamics observed in supercooled molecular liquids close to the glass transition. The mode-coupling theory (MCT) originally formulated to study the slow relaxation in simple atomic liquids, and then extended to the analysis of liquids composed by linear molecules, is here generalized to systems of arbitrarily shaped, rigid molecules. We compare the predictions of the theory for the qq-vector dependence of the molecular nonergodicity parameters, calculated by solving numerically the molecular MCT equations in two different approximation schemes, with ``exact'' results calculated from a molecular dynamics simulation of supercooled water. The agreement between theory and simulation data supports the view that MCT succeeds in describing the dynamics of supercooled molecular liquids, even for network forming ones.Comment: 22 pages 4 figures Late

    The Kolmogorov-Sinai Entropy for Dilute Gases in Equilibrium

    Full text link
    We use the kinetic theory of gases to compute the Kolmogorov-Sinai entropy per particle for a dilute gas in equilibrium. For an equilibrium system, the KS entropy, h_KS is the sum of all of the positive Lyapunov exponents characterizing the chaotic behavior of the gas. We compute h_KS/N, where N is the number of particles in the gas. This quantity has a density expansion of the form h_KS/N = a\nu[-\ln{\tilde{n}} + b + O(\tilde{n})], where \nu is the single-particle collision frequency and \tilde{n} is the reduced number density of the gas. The theoretical values for the coefficients a and b are compared with the results of computer simulations, with excellent agreement for a, and less than satisfactory agreement for b. Possible reasons for this difference in b are discussed.Comment: 15 pages, 2 figures, submitted to Phys. Rev.

    Towards Rechargeable Zinc-Air Batteries with Aqueous Chloride Electrolytes

    Full text link
    This paper presents a combined theoretical and experimental investigation of aqueous near-neutral electrolytes based on chloride salts for rechargeable zinc-air batteries (ZABs). The resilience of near-neutral chloride electrolytes in air could extend ZAB lifetime, but theory-based simulations predict that such electrolytes are vulnerable to other challenges including pH instability and the unwanted precipitation of mixed zinc hydroxide chloride products. In this work, we combine theory-based simulations with experimental methods such as full cell cycling, operando pH measurements, ex-situ XRD, SEM, and EDS characterization to investigate the performance of ZABs with aqueous chloride electrolytes. The experimental characterization of near-neutral ZAB cells observes the predicted pH instability and confirms the composition of the final discharge products. Steps to promote greater pH stability and control the precipitation of discharge products are proposed.Comment: 13 pages, 12 figure

    AIM2 inflammasome-derived IL-1 beta induces postoperative ileus in mice

    Get PDF
    Postoperative ileus (POI) is an intestinal dysmotility frequently occurring after abdominal surgery. An orchestrated neuroimmune response within the muscularis externa (ME) involves activation of resident macrophages, enteric glia and infiltration of blood-derived leukocytes. Interleukin-1 receptor type-I (IL1R1) signalling on enteric glia has been shown to be involved in POI development. Herein we investigated the distinct role of the IL1R1 ligands interleukin (IL)-1 alpha and IL-1 beta and focused on the mechanism of IL-1 beta production. IL-1 alpha and IL-1 beta deficient mice were protected from POI. Bone-marrow transplantation studies indicated that IL-1 alpha originated from radio-resistant cells while IL-1 beta was released from the radio-sensitive infiltrating leukocytes. Mouse strains deficient in inflammasome formation identified the absent in melanoma 2 (AIM2) inflammasome to be crucial for IL-1 beta production in POI. Mechanistically, antibiotic-treated mice revealed a prominent role of the microbiome in IL-1 beta production. Our study provides new insights into distinct roles of IL-1 alpha and IL-1 beta signalling during POI. While IL-1 alpha release is most likely an immediate passive response to the surgical trauma, IL-1 beta production depends on AIM2 inflammasome formation and the microbiome. Selective interaction in this pathway might be a promising target to prevent POI in surgical patients

    Thermodynamic formalism for systems with Markov dynamics

    Full text link
    The thermodynamic formalism allows one to access the chaotic properties of equilibrium and out-of-equilibrium systems, by deriving those from a dynamical partition function. The definition that has been given for this partition function within the framework of discrete time Markov chains was not suitable for continuous time Markov dynamics. Here we propose another interpretation of the definition that allows us to apply the thermodynamic formalism to continuous time. We also generalize the formalism --a dynamical Gibbs ensemble construction-- to a whole family of observables and their associated large deviation functions. This allows us to make the connection between the thermodynamic formalism and the observable involved in the much-studied fluctuation theorem. We illustrate our approach on various physical systems: random walks, exclusion processes, an Ising model and the contact process. In the latter cases, we identify a signature of the occurrence of dynamical phase transitions. We show that this signature can already be unravelled using the simplest dynamical ensemble one could define, based on the number of configuration changes a system has undergone over an asymptotically large time window.Comment: 64 pages, LaTeX; version accepted for publication in Journal of Statistical Physic
    corecore