42 research outputs found

    Isolation and characterization of canine perivascular stem/stromal cells for bone tissue engineering

    Get PDF
    For over 15 years, human subcutaneous adipose tissue has been recognized as a rich source of tissue resident mesenchymal stem/stromal cells (MSC). The isolation of perivascular progenitor cells from human adipose tissue by a cell sorting strategy was first published in 2008. Since this time, the interest in using pericytes and related perivascular stem/stromal cell (PSC) populations for tissue engineering has significantly increased. Here, we describe a set of experiments identifying, isolating and characterizing PSC from canine tissue (N = 12 canine adipose tissue samples). Results showed that the same antibodies used for human PSC identification and isolation are cross-reactive with canine tissue (CD45, CD146, CD34). Like their human correlate, canine PSC demonstrate characteristics of MSC including cell surface marker expression, colony forming unit-fibroblast (CFU-F) inclusion, and osteogenic differentiation potential. As well, canine PSC respond to osteoinductive signals in a similar fashion as do human PSC, such as the secreted differentiation factor NEL-Like Molecule-1 (NELL-1). Nevertheless, important differences exist between human and canine PSC, including differences in baseline osteogenic potential. In summary, canine PSC represent a multipotent mesenchymogenic cell source for future translational efforts in tissue engineering

    Unhealthy Lifestyle and Gut Dysbiosis: A Better Understanding of the Effects of Poor Diet and Nicotine on the Intestinal Microbiome.

    No full text
    The study of the intestinal or gut microbiome is a newer field that is rapidly gaining attention. Bidirectional communication between gut microbes and the host can impact numerous biological systems regulating immunity and metabolism to either promote or negatively impact the host's health. Habitual routines, dietary choices, socioeconomic status, education, host genetics, medical care and environmental factors can all contribute to the composition of an individual's microbiome. A key environmental factor that may cause negative outcomes is the consumption of nicotine products. The effects of nicotine on the host can be exacerbated by poor dietary choices and together can impact the composition of the gut microbiota to promote the development of metabolic disease including non-alcoholic fatty liver disease. This review explores the contribution of nicotine, poor dietary choices and other unhealthy lifestyle factors to gut dysbiosis

    Multi-omics profiles of the intestinal microbiome in irritable bowel syndrome and its bowel habit subtypes

    No full text
    Abstract Background Irritable bowel syndrome (IBS) is a common gastrointestinal disorder that is thought to involve alterations in the gut microbiome, but robust microbial signatures have been challenging to identify. As prior studies have primarily focused on composition, we hypothesized that multi-omics assessment of microbial function incorporating both metatranscriptomics and metabolomics would further delineate microbial profiles of IBS and its subtypes. Methods Fecal samples were collected from a racially/ethnically diverse cohort of 495 subjects, including 318 IBS patients and 177 healthy controls, for analysis by 16S rRNA gene sequencing (n = 486), metatranscriptomics (n = 327), and untargeted metabolomics (n = 368). Differentially abundant microbes, predicted genes, transcripts, and metabolites in IBS were identified by multivariate models incorporating age, sex, race/ethnicity, BMI, diet, and HAD-Anxiety. Inter-omic functional relationships were assessed by transcript/gene ratios and microbial metabolic modeling. Differential features were used to construct random forests classifiers. Results IBS was associated with global alterations in microbiome composition by 16S rRNA sequencing and metatranscriptomics, and in microbiome function by predicted metagenomics, metatranscriptomics, and metabolomics. After adjusting for age, sex, race/ethnicity, BMI, diet, and anxiety, IBS was associated with differential abundance of bacterial taxa such as Bacteroides dorei; metabolites including increased tyramine and decreased gentisate and hydrocinnamate; and transcripts related to fructooligosaccharide and polyol utilization. IBS further showed transcriptional upregulation of enzymes involved in fructose and glucan metabolism as well as the succinate pathway of carbohydrate fermentation. A multi-omics classifier for IBS had significantly higher accuracy (AUC 0.82) than classifiers using individual datasets. Diarrhea-predominant IBS (IBS-D) demonstrated shifts in the metatranscriptome and metabolome including increased bile acids, polyamines, succinate pathway intermediates (malate, fumarate), and transcripts involved in fructose, mannose, and polyol metabolism compared to constipation-predominant IBS (IBS-C). A classifier incorporating metabolites and gene-normalized transcripts differentiated IBS-D from IBS-C with high accuracy (AUC 0.86). Conclusions IBS is characterized by a multi-omics microbial signature indicating increased capacity to utilize fermentable carbohydrates—consistent with the clinical benefit of diets restricting this energy source—that also includes multiple previously unrecognized metabolites and metabolic pathways. These findings support the need for integrative assessment of microbial function to investigate the microbiome in IBS and identify novel microbiome-related therapeutic targets. Video Abstrac

    CSA13 inhibits colitis-associated intestinal fibrosis via a formyl peptide receptor like-1 mediated HMG-CoA reductase pathway

    No full text
    Abstract Many Crohn’s disease (CD) patients develop intestinal strictures, which are difficult to prevent and treat. Cationic steroid antimicrobial 13 (CSA13) shares cationic nature and antimicrobial function with antimicrobial peptide cathelicidin. As many functions of cathelicidin are mediated through formyl peptide receptor-like 1 (FPRL1), we hypothesize that CSA13 mediates anti-fibrogenic effects via FPRL1. Human intestinal biopsies were used in clinical data analysis. Chronic trinitrobenzene sulfonic acid (TNBS) colitis-associated intestinal fibrosis mouse model with the administration of CSA13 was used. Colonic FPRL1 mRNA expression was positively correlated with the histology scores of inflammatory bowel disease patients. In CD patients, colonic FPRL1 mRNA was positively correlated with intestinal stricture. CSA13 administration ameliorated intestinal fibrosis without influencing intestinal microbiota. Inhibition of FPRL1, but not suppression of intestinal microbiota, reversed these protective effects of CSA13. Metabolomic analysis indicated increased fecal mevalonate levels in the TNBS-treated mice, which were reduced by the CSA13 administration. CSA13 inhibited colonic HMG-CoA reductase activity in an FPRL1-dependent manner. Mevalonate reversed the anti-fibrogenic effect of CSA13. The increased colonic FPRL1 expression is associated with severe mucosal disease activity and intestinal stricture. CSA13 inhibits intestinal fibrosis via FPRL1-dependent modulation of HMG-CoA reductase pathway

    Microbial changes from bariatric surgery alters glucose-dependent insulinotropic polypeptide and prevents fatty liver disease

    No full text
    ABSTRACTBariatric surgery remains a potent therapy for nonalcoholic fatty liver disease (NAFLD), but its inherent risk and eligibility requirement limit its adoption. Therefore, understanding how bariatric surgery improves NAFLD is paramount to developing novel therapeutics. Here, we show that the microbiome changes induced by sleeve gastrectomy (SG) reduce glucose-dependent insulinotropic polypeptide (GIP) signaling and confer resistance against diet-induced obesity (DIO) and NAFLD. We examined a cohort of NALFD patients undergoing SG and evaluated their microbiome, serum metabolites, and GI hormones. We observed significant changes in Bacteroides, lipid-related metabolites, and reduction in GIP. To examine if the changes in the microbiome were causally related to NAFLD, we performed fecal microbial transplants in antibiotic-treated mice from patients before and after their surgery who had significant weight loss and improvement of their NAFLD. Mice transplanted with the microbiome of patients after bariatric surgery were more resistant to DIO and NAFLD development compared to mice transplanted with the microbiome of patients before surgery. This resistance to DIO and NAFLD was also associated with a reduction in GIP levels in mice with post-bariatric microbiome. We further show that the reduction in GIP was related to higher levels of Akkermansia and differing levels of indolepropionate, bacteria-derived tryptophan-related metabolite. Overall, this is one of the few studies showing that GIP signaling is altered by the gut microbiome, and it supports that the positive effect of bariatric surgery on NAFLD is in part due to microbiome changes
    corecore