22 research outputs found

    DatenqualitÀtsanalysen im Rahmen der MII-Projectathons

    No full text

    Data Quality Assessment in the seventh MII-Projectathon

    No full text

    FAIR DQIs II: Umsetzung von PlausibilitÀtsgrenzen in Forschung und Versorgung

    No full text

    The Way Data Flows: Current Provenance Options in Collaborative Research

    No full text

    FAIR Metadaten zur Beschreibung der Auffindbarkeit von DatensÀtzen

    No full text

    Ontologische Modellierung und FHIR Search basierte ReprÀsentation grundlegender Ein- und Ausschlusskriterien

    No full text
    Planning clinical studies to check medical hypotheses requires the specification of eligibility criteria in order to identify potential study participants. Electronically available patient data allows to support the recruitment of patients for studies. The Smart Medical Information Technology for Healthcare (SMITH) consortium aims to establish data integration centres to enable the innovative use of available healthcare data for research and treatment optimization. The data from the electronic health record of patients in the participating hospitals is integrated into a Health Data Storage based on the Fast Healthcare Interoperability Resources standard (FHIR), developed by HL7. In SMITH, FHIR Search is used to query the integrated data. An investigation has shown the advantages and disadvantages of using FHIR Search for specifying eligibility criteria. This paper presents an approach for modelling eligibility criteria as well as for generating and executing FHIR Search queries. Our solution is based on the Phenotype Manager, a general ontological phenotyping framework to model and calculate phenotypes using the Core Ontology of Phenotypes.Die Planung klinischer Studien zur ÜberprĂŒfung medizinischer Hypothesen erfordert die Spezifikation von Ein- und Ausschlusskriterien, um potenzielle Studienteilnehmer zu identifizieren. Elektronisch verfĂŒgbare Patientendaten ermöglichen es, die Rekrutierung von Patienten fĂŒr Studien zu unterstĂŒtzen. Das Konsortium Smart Medical Information Technology for Healthcare (SMITH) hat sich zum Ziel gesetzt, Datenintegrationszentren zu etablieren, um die innovative Nutzung verfĂŒgbarer Gesundheitsdaten fĂŒr Forschung und Behandlungsoptimierung zu ermöglichen. Die Daten aus elektronischen Gesundheitsakten von Patienten in den teilnehmenden KrankenhĂ€usern werden in einem Health Data Storage integriert, der auf dem von HL7 entwickelten Fast Healthcare Interoperability Resources Standard (FHIR) basiert. In SMITH wird FHIR Search verwendet, um die integrierten Daten abzufragen. Eine Untersuchung hat die Vor- und Nachteile der Verwendung von FHIR Search zur Spezifikation von Ein- und Ausschlusskriterien aufgezeigt. Dieser Artikel prĂ€sentiert einen Ansatz zur Modellierung von Ein- und Ausschlusskriterien sowie zur Generierung und AusfĂŒhrung von FHIR Search Queries. Unsere Lösung basiert auf dem Phenotype Manager, einem allgemeinen ontologischen PhĂ€notypisierungs-Framework zur Modellierung und Berechnung von PhĂ€notypen unter Verwendung der Core Ontology of Phenotypes

    Blood flow characteristics in the ascending aorta after TAVI compared to surgical aortic valve replacement

    No full text
    Ascending aortic blood flow characteristics are altered after aortic valve surgery, but the effect of transcatheter aortic valve implantation (TAVI) is unknown. Abnormal flow may be associated with aortic and cardiac remodeling. We analyzed blood flow characteristics in the ascending aorta after TAVI in comparison to conventional stented aortic bioprostheses (AVR) and healthy subjects using time-resolved three-dimensional flow-sensitive cardiovascular magnetic resonance imaging (4D-flow MRI). Seventeen patients with TAVI (Edwards Sapien XT), 12 with AVR and 9 healthy controls underwent 4D-flow MRI of the ascending aorta. Target parameters were: severity of vortical and helical flow pattern (semiquantitative grading from 0 = none to 3 = severe) and the local distribution of systolic wall shear stress (WSSsystole). AVR revealed significantly more extensive vortical and helical flow pattern than TAVI (p = 0.042 and p = 0.002) and controls (p < 0.001 and p = 0.001). TAVI showed significantly more extensive vortical flow than controls (p < 0.001). Both TAVI and AVR revealed marked blood flow eccentricity (64.7 and 66.7 %, respectively), whereas controls showed central blood flow (88.9 %). TAVI and AVR exhibited an asymmetric distribution of WSSsystole in the mid-ascending aorta with local maxima at the right anterior aortic wall and local minima at the left posterior wall. In contrast, controls showed a symmetric distribution of WSSsystole along the aortic circumference. Blood flow was significantly altered in the ascending aorta after TAVI and AVR. Changes were similar regarding WSSsystole distribution, while TAVI resulted in less helical and vortical blood flow
    corecore