21 research outputs found

    Universal bounds on the selfaveraging of random diffraction measures

    Get PDF
    We consider diffraction at random point scatterers on general discrete point sets in Rν\R^\nu, restricted to a finite volume. We allow for random amplitudes and random dislocations of the scatterers. We investigate the speed of convergence of the random scattering measures applied to an observable towards its mean, when the finite volume tends to infinity. We give an explicit universal large deviation upper bound that is exponential in the number of scatterers. The rate is given in terms of a universal function that depends on the point set only through the minimal distance between points, and on the observable only through a suitable Sobolev-norm. Our proof uses a cluster expansion and also provides a central limit theorem

    Sharp thresholds for Gibbs-non-Gibbs transition in the fuzzy Potts model with a Kac-type interaction

    Get PDF
    We investigate the Gibbs properties of the fuzzy Potts model on the d-dimensional torus with Kac interaction. We use a variational approach for profiles inspired by that of Fernandez, den Hollander and Mart{\i}nez for their study of the Gibbs-non-Gibbs transitions of a dynamical Kac-Ising model on the torus. As our main result, we show that the mean-field thresholds dividing Gibbsian from non-Gibbsian behavior are sharp in the fuzzy Kac-Potts model with class size unequal two. On the way to this result we prove a large deviation principle for color profiles with diluted total mass densities and use monotocity arguments.Comment: 20 page

    Continuous interfaces with disorder: Even strong pinning is too weak in 2 dimensions

    Get PDF
    We consider statistical mechanics models of continuous height effective interfaces in the presence of a delta-pinning at height zero. There is a detailed mathematical understanding of the depinning transition in 2 dimensions without disorder. Then the variance of the interface height w.r.t. the Gibbs measure stays bounded uniformly in the volume for any positive pinning force and diverges like the logarithm of the pinning force when it tends to zero. How does the presence of a quenched disorder term in the Hamiltonian modify this transition? We show that an arbitarily weak random field term is enough to beat an arbitrarily strong delta-pinning in 2 dimensions and will cause delocalization. The proof is based on a rigorous lower bound for the overlap between local magnetizations and random fields in finite volume. In 2 dimensions it implies growth faster than the volume which is a contradiction to localization. We also derive a simple complementary inequality which shows that in higher dimensions the fraction of pinned sites converges to one when the pinning force tends to infinity.Comment: 8 page

    A simple fluctuation lower bound for a disordered massless random continuous spin model in d=2

    Get PDF
    We prove a finite volume lower bound of the order of the squareroot of log N on the delocalization of a disordered continuous spin model (resp. effective interface model) in d = 2 in a box of size N . The interaction is assumed to be massless, possibly anharmonic and dominated from above by a Gaussian. Disorder is entering via a linear source term. For this model delocalization with the same rate is proved to take place already without disorder. We provide a bound which is uniform in the configuration of the disorder, and so our proof shows that randomness will only enhance fluctuations

    Fuzzy transformations and extremality of Gibbs measures for the Potts model on a Cayley tree

    Full text link
    We continue our study of the full set of translation-invariant splitting Gibbs measures (TISGMs, translation-invariant tree-indexed Markov chains) for the qq-state Potts model on a Cayley tree. In our previous work \cite{KRK} we gave a full description of the TISGMs, and showed in particular that at sufficiently low temperatures their number is 2q12^{q}-1. In this paper we find some regions for the temperature parameter ensuring that a given TISGM is (non-)extreme in the set of all Gibbs measures. In particular we show the existence of a temperature interval for which there are at least 2q1+q2^{q-1} + q extremal TISGMs. For the Cayley tree of order two we give explicit formulae and some numerical values.Comment: 44 pages. To appear in Random Structures and Algorithm

    Loss without recovery of Gibbsianness during diffusion of continuous spins

    Get PDF
    We consider a specific continuous-spin Gibbs distribution μt=0\mu_{t=0} for a double-well potential that allows for ferromagnetic ordering. We study the time-evolution of this initial measure under independent diffusions. For `high temperature' initial measures we prove that the time-evoved measure μt\mu_{t} is Gibbsian for all tt. For `low temperature' initial measures we prove that μt\mu_t stays Gibbsian for small enough times tt, but loses its Gibbsian character for large enough tt. In contrast to the analogous situation for discrete-spin Gibbs measures, there is no recovery of the Gibbs property for large tt in the presence of a non-vanishing external magnetic field. All of our results hold for any dimension d2d\geq 2. This example suggests more generally that time-evolved continuous-spin models tend to be non-Gibbsian more easily than their discrete-spin counterparts

    On the Purity of the free boundary condition Potts measure on random trees

    Get PDF
    We consider the free boundary condition Gibbs measure of the Potts model on a random tree. We provide an explicit temperature interval below the ferromagnetic transition temperature for which this measure is extremal, improving older bounds of Mossel and Peres. In information theoretic language extremality of the Gibbs measure corresponds to non-reconstructability for symmetric q-ary channels. The bounds are optimal for the Ising model and appear to be close to what we conjecture to be the true values up to a factor of 0.0150 in the case q = 3 and 0.0365 for q = 4. Our proof uses an iteration of random boundary entropies from the outside of the tree to the inside, along with a symmetrization argument.Comment: 14 page

    The Posterior metric and the Goodness of Gibbsianness for transforms of Gibbs measures

    Get PDF
    We present a general method to derive continuity estimates for conditional probabilities of general (possibly continuous) spin models sub jected to local transformations. Such systems arise in the study of a stochastic time-evolution of Gibbs measures or as noisy observations. We exhibit the minimal necessary structure for such double-layer systems. Assuming no a priori metric on the local state spaces, we define the posterior metric on the local image space. We show that it allows in a natural way to divide the local part of the continuity estimates from the spatial part (which is treated by Dobrushin uniqueness here). We show in the concrete example of the time evolution of rotators on the q-1 dimensional sphere how this method can be used to obtain estimates in terms of the familiar Euclidean metric.Comment: 32 page

    A symmetric entropy bound on the non-reconstruction regime of Markov chains on Galton-Watson trees

    Full text link
    We give a criterion of the form Q(d)c(M)<1 for the non-reconstructability of tree-indexed q-state Markov chains obtained by broadcasting a signal from the root with a given transition matrix M. Here c(M) is an explicit function, which is convex over the set of M's with a given invariant distribution, that is defined in terms of a (q-1)-dimensional variational problem over symmetric entropies. Further Q(d) is the expected number of offspring on the Galton-Watson tree. This result is equivalent to proving the extremality of the free boundary condition-Gibbs measure within the corresponding Gibbs-simplex. Our theorem holds for possibly non-reversible M and its proof is based on a general Recursion Formula for expectations of a symmetrized relative entropy function, which invites their use as a Lyapunov function. In the case of the Potts model, the present theorem reproduces earlier results of the authors, with a simplified proof, in the case of the symmetric Ising model (where the argument becomes similar to the approach of Pemantle and Peres) the method produces the correct reconstruction threshold), in the case of the (strongly) asymmetric Ising model where the Kesten-Stigum bound is known to be not sharp the method provides improved numerical bounds.Comment: 10 page
    corecore