6,519 research outputs found

    The Catalytic Role of Glutamate 151 in the Leucine Aminopeptidase from \u3cem\u3eAeromonas proteolytica\u3c/em\u3e

    Get PDF
    Glutamate 151 has been proposed to act as the general acid/base during the peptide hydrolysis reaction catalyzed by the co-catalytic metallohydrolase from Aeromonas proteolytica (AAP). However, to date, no direct evidence has been reported for the role of Glu-151 during catalytic turnover by AAP. In order to elucidate the catalytic role of Glu-151, altered AAP enzymes have been prepared in which Glu-151 has been substituted with a glutamine, an alanine, and an aspartate. The Michaelis constant (Km) does not change upon substitution to aspartate or glutamine, but the rate of the reaction changes drastically in the following order: glutamate (100% activity), aspartate (0.05%), glutamine (0.004%), and alanine (0%). Examination of the pH dependence of the kinetic constants kcat and Km revealed a change in the pKa of a group that ionizes at pH 4.8 in recombinant leucine aminopeptidase (rAAP) to 4.2 for E151D-AAP. The remaining pKa values at 5.2, 7.5, and 9.9 do not change. Proton inventory studies indicate that one proton is transferred in the rate-limiting step of the reaction at pH 10.50 for both rAAP and E151D-AAP, but at pH 6.50 two protons and general solvation effects are responsible for the observed effects in the reaction catalyzed by rAAP and E151D-AAP, respectively. Based on these data, Glu-151 is intrinsically involved in the peptide hydrolysis reaction catalyzed by AAP and can be assigned the role of a general acid and base

    SOTXTSTREAM: Density-based self-organizing clustering of text streams

    Get PDF
    A streaming data clustering algorithm is presented building upon the density-based selforganizing stream clustering algorithm SOSTREAM. Many density-based clustering algorithms are limited by their inability to identify clusters with heterogeneous density. SOSTREAM addresses this limitation through the use of local (nearest neighbor-based) density determinations. Additionally, many stream clustering algorithms use a two-phase clustering approach. In the first phase, a micro-clustering solution is maintained online, while in the second phase, the micro-clustering solution is clustered offline to produce a macro solution. By performing self-organization techniques on micro-clusters in the online phase, SOSTREAM is able to maintain a macro clustering solution in a single phase. Leveraging concepts from SOSTREAM, a new density-based self-organizing text stream clustering algorithm, SOTXTSTREAM, is presented that addresses several shortcomings of SOSTREAM. Gains in clustering performance of this new algorithm are demonstrated on several real-world text stream datasets

    Constraining the Location of Gamma-Ray Flares in Luminous Blazars

    Full text link
    Locating the gamma-ray emission sites in blazar jets is a long-standing and highly controversial issue. We investigate jointly several constraints on the distance scale r and Lorentz factor Gamma of the gamma-ray emitting regions in luminous blazars (primarily flat spectrum radio quasars, FSRQs). Working in the framework of one-zone external radiation Comptonization (ERC) models, we perform a parameter space study for several representative cases of actual gamma-ray flares in their multiwavelength context. We find a particularly useful combination of three constraints: from an upper limit on the collimation parameter Gamma*theta <~ 1, from an upper limit on the synchrotron self-Compton (SSC) luminosity L_SSC <~ L_X, and from an upper limit on the efficient cooling photon energy E_cool,obs <~ 100 MeV. These three constraints are particularly strong for sources with low accretion disk luminosity L_d. The commonly used intrinsic pair-production opacity constraint on Gamma is usually much weaker than the SSC constraint. The SSC and cooling constraints provide a robust lower limit on the collimation parameter Gamma*theta >~ 0.1 - 0.7. Typical values of r corresponding to moderate values of Gamma ~ 20 are in the range 0.1 - 1 pc, and are determined primarily by the observed variability time scale t_var,obs. Alternative scenarios motivated by the observed gamma-ray/mm connection, in which gamma-ray flares of t_var,obs ~ a few days are located at r ~ 10 pc, are in conflict with both the SSC and cooling constraints. Moreover, we use a simple light travel time argument to point out that the gamma-ray/mm connection does not provide a significant constraint on the location of gamma-ray flares. We argue that spine-sheath models of the jet structure do not offer a plausible alternative to external radiation fields at large distances, however, an extended broad-line region is an idea worth exploring.Comment: 21 pages, 10 figures, accepted for publication in Ap

    Stellar Mergers Are Common

    Full text link
    The observed Galactic rate of stellar mergers or the initiation of common envelope phases brighter than M_V=-3 (M_I=-4) is of order 0.5 (0.3)/year with 90% confidence statistical uncertainties of 0.24-1.1 (0.14-0.65) and factor of 2 systematic uncertainties. The (peak) luminosity function is roughly dN/dL L^(-1.4+/-0.3), so the rates for events more luminous than V1309 Sco (M_V=-7 mag) or V838Mon (M_V=-10 mag) are lower at r~0.1/year and 0.03/year, respectively. The peak luminosity is a steep function of progenitor mass, L M^(2-3). This very roughly parallels the scaling of luminosity with mass on the main sequence, but the transients are ~2000-4000 times more luminous at peak. Combining these, the mass function of the progenitors, dN/dM M^(-2.0+/-0.8), is consistent with the initial mass function, albeit with broad uncertainties. These observational results are also broadly consistent with the estimates of binary population synthesis models. While extragalactic variability surveys can better define the rates and properties of the high luminosity events, systematic, moderate depth (I>16 mag) surveys of the Galactic plane are needed to characterize the low luminosity events. The existing Galactic samples are only ~20% complete and Galactic surveys are (at best) reaching a typical magnitude limit of <13 mag.Comment: Submitted to MNRAS (13 pages, 6 figures, 3 tables
    • …
    corecore