6,673 research outputs found

    Energy gaps in amorphous covalent semiconductors

    Get PDF
    A calculation of approximate density of states for a disordered covalent semiconductor shows that the energy gap is due to the presence of short range order

    Critical analysis of the 'generalized coherent wave approximation'

    Get PDF
    The formalism developed by Fletcher (1967) to take account of the presence of short range order in the calculation of the electronic energy spectrum of amorphous covalent semiconductors is examined critically and found to have fundamental difficulties

    Ultrasonic detection and measurement of fatigue cracks in notched specimens

    Get PDF
    Ultrasonic detection and measurement of fatigue crack propagation in notched specimens of aluminum, titanium, and cobalt alloys and maraging steel

    Fatigue cracks detected and measured without test interruption

    Get PDF
    Ultrasonic flaw detector records cracks in materials undergoing fatigue tests, without interfering with test progress. The detector contains modified transducers clamped to the specimens, and an oscillograph readout

    Evaluation of solar cell welds by scanning acoustic microscopy

    Get PDF
    Scanning laser acoustic microscopy was used to nondestructively evaluate solar cell interconnect bonds made by resistance welding. Both copper-silver and silver-silver welds were analyzed. The bonds were produced either by a conventional parallel-gap welding technique using rectangular electrodes or new annular gap design with a circular electrode cross section. With the scanning laser acoustic microscope, it was possible to produce a real time television image which reveales the weld configuration as it relates to electrode geometry. The effect of electrode misalinement with the surface of the cell was also determined. A preliminary metallographic analysis was performed on selected welds to establish the relationship between actual size and shape of the weld area and the information available from acoustic micrographs

    Functional screening in Drosophila reveals the conserved role of REEP1 in promoting stress resistance and preventing the formation of Tau aggregates

    Get PDF
    Pathological modifications in the microtubule-associated protein Tau is a common characteristic observed in different neurological diseases, suggesting that analogous metabolic pathways might be similarly affected during neurodegeneration. To identify these molecules and mechanisms, we utilized Drosophila models of human Tau-mediated neurodegeneration to perform an RNA interference functional screening against genes considered to be implicated in the pathogenesis of different neurodegenerative disorders. We found that the downregulation of the Drosophila REEP1 homolog protein enhanced Tau toxicity with increased formation of insoluble aggregates. On the contrary, the overexpression of either the Drosophila or the human REEP1 protein was able to revert these phenotypes and promote neuronal resistance to ER stress. These studies identify a new function for the REEP1 protein in vivo and a novel cellular mechanism to prevent Tau toxicity

    Evaluation of electrode shape and nondestructive evaluation method for welded solar cell interconnects

    Get PDF
    Resistance welds of solar cell interconnect tabs were evaluated. Both copper-silver and silver-silver welds were made with various heat inputs and weld durations. Parallel gap and annular gap weld electrode designs were used. The welds were analyzed by light microscope, electron microprobe and scanning laser acoustic microscope. These analyses showed the size and shape of the weld, the relationship between the acoustic micrographs, the visible electrode footprint, and the effect of electrode misalignment. The effect of weld heat input on weld microstructure was also shown

    Quantification of mixture composition, liquid-phase fraction and temperature in transcritical sprays

    Get PDF
    How do fuel and air mix, if a liquid fuel is injected into an environment featuring pressure and temperature that exceed the critical pressure and the critical temperature of the fuel? It is subject of current discussion on whether and if so when, the fuel/air-mixture becomes supercritical or not. We here report experimental data comprising three mixture properties that are relevant for the current debate, all spatially and temporally resolved throughout the spray and injection event: The overall composition of the fuel/air-mixture, the liquid fraction of the fuel/air-mixture, and the temperature of the liquid phase. To this end, we applied Raman spectroscopy and gave special attention to the signature of the Raman OH-band of ethanol, which we used as fuel. Its signature is connected to the development of a hydrogen bonded network between the ethanol molecules and thus extremely sensitive to thermodynamic state and temperature. Measurements were carried out in a high-pressure, high-temperature combustion vessel in a pressure range of 3−8 MPa and a temperature range of 573−923 K. For the highest set temperature we found ethanol in liquid-like mixtures that exceeded the mixture critical temperature. This is an indication of the existence of a single-phase mixing path
    • …
    corecore