915 research outputs found

    Non-equilibrium condensation and coarsening of field-driven dipolar colloids

    Full text link
    In colloidal suspensions, self-organization processes can be easily fueled by external fields. One particularly interesting class of phenomena occurs in monolayers of dipolar particles that are driven by rotating external fields. Here we report results from a computer simulation study of such systems focusing on the clustering behavior also observed in recent experiments. The key result of this paper is a novel interpretation of this pattern formation phenomenon: We show the clustering to be a by-product of a vapor-liquid first order phase transition. In fact, the observed dynamic coarsening process corresponds to the spindodal demixing that occurs during such a transitionComment: 6 pages, 5 figure

    Nanotribology of biopolymer brushes in aqueous solution using dissipative particle dynamics simulations: an application to PEG covered liposomes in theta solvent

    Get PDF
    We undertake the investigation of sheared polymer chains grafted on flat surfaces to model liposomes covered with polyethylene glycol brushes as a case study for the mechanisms of efficient drug delivery in biologically relevant situations, for example, as carriers for topical treatments of illnesses in the human vasculature. For these applications, specific rheological properties are required, such as low viscosity at high shear rate to improve the transport of the liposomes. Therefore non - equilibrium, DPD simulations of polymer brushes of various length and shear rates are performed to obtain the average viscosity and friction coefficient of the system as functions of the shear rate and polymerization degree under theta solvent conditions, and find that the brushes experience shear thinning at large shear rates.The viscosity and the friction coefficient are shown to obey scaling laws at high shear rate in theta solvent, irrespective of the brushes degree of polymerization. These results confirm recent scaling predictions and reproduce very well trends in measurements of the viscosity at high shear of red blood cells in a liposome containing medium.Comment: 32 pages, 8 figure

    Surface-charge-induced freezing of colloidal suspensions

    Full text link
    Using grand-canonical Monte Carlo simulations we investigate the impact of charged walls on the crystallization properties of charged colloidal suspensions confined between these walls. The investigations are based on an effective model focussing on the colloids alone. Our results demonstrate that the fluid-wall interaction stemming from charged walls has a crucial impact on the fluid's high-density behavior as compared to the case of uncharged walls. In particular, based on an analysis of in-plane bond order parameters we find surface-charge-induced freezing and melting transitions

    Non-linear rheology of active particle suspensions: Insights from an analytical approach

    Full text link
    We consider active suspensions in the isotropic phase subjected to a shear flow. Using a set of extended hydrodynamic equations we derive a variety of {\em analytical} expressions for rheological quantities such as shear viscosity and normal stress differences. In agreement to full-blown numerical calculations and experiments we find a shear thickening or -thinning behaviour depending on whether the particles are contractile or extensile. Moreover, our analytical approach predicts that the normal stress differences can change their sign in contrast to passive suspensions.Comment: 11 pages, 10 figures, appear in PR

    First Stars. I. Evolution without mass loss

    Full text link
    The first generation of stars was formed from primordial gas. Numerical simulations suggest that the first stars were predominantly very massive, with typical masses M > 100 Mo. These stars were responsible for the reionization of the universe, the initial enrichment of the intergalactic medium with heavy elements, and other cosmological consequences. In this work, we study the structure of Zero Age Main Sequence stars for a wide mass and metallicity range and the evolution of 100, 150, 200, 250 and 300 Mo galactic and pregalactic Pop III very massive stars without mass loss, with metallicity Z=10E-6 and 10E-9, respectively. Using a stellar evolution code, a system of 10 equations together with boundary conditions are solved simultaneously. For the change of chemical composition, which determines the evolution of a star, a diffusion treatment for convection and semiconvection is used. A set of 30 nuclear reactions are solved simultaneously with the stellar structure and evolution equations. Several results on the main sequence, and during the hydrogen and helium burning phases, are described. Low metallicity massive stars are hotter and more compact and luminous than their metal enriched counterparts. Due to their high temperatures, pregalactic stars activate sooner the triple alpha reaction self-producing their own heavy elements. Both galactic and pregalactic stars are radiation pressure dominated and evolve below the Eddington luminosity limit with short lifetimes. The physical characteristics of the first stars have an important influence in predictions of the ionizing photon yields from the first luminous objects; also they develop large convective cores with important helium core masses which are important for explosion calculations.Comment: 17 pages, 24 figures, 2 table

    Fluids of hard ellipsoids: Phase diagram including a nematic instability from Percus-Yevick theory

    Full text link
    An important aspect of molecular fluids is the relation between orientation and translation parts of the two-particle correlations. Especially the detailed knowledge of the influence of orientation correlations is needed to explain and calculate in detail the occurrence of a nematic phase. The simplest model system which shows both orientation and translation correlations is a system of hard ellipsoids. We investigate an isotropic fluid formed of hard ellipsoids with Percus-Yevick theory. Solving the Percus-Yevick equations self-consistently in the high density regime gives a clear criterion for a nematic instability. We calculate in detail the equilibrium phase diagram for a fluid of hard ellipsoids of revolution. Our results compare well with Monte Carlo Simulations and density functional theory.Comment: 7 pages including 4 figure

    Self-assembly of amphiphilic Janus particles at planar walls: A density functional study

    Full text link
    We investigate the structure formation of amphiphilic molecules at planar walls using density functional theory. The molecules are modeled as (hard) spheres composed of a hydrophilic and hydrophobic part. The orientation of the resulting Janus-particles is described as a vector representing an internal degree of freedom. Our density functional approach involves Fundamental Measure Theory combined with a mean-field approximation for the anisotropic interaction. Considering neutral, hydrophilic and hydrophobic walls, we study the adsorption of the particles, focussing on the competition between the surface field and interact ion-induced ordering phenomena. Finally, we consider systems confined between two planar walls. It is shown that the anisotropic Janus interaction yields pronounced frustration effects at low temperatures.Comment: 11 page

    Density functional formalism in the canonical ensemble

    Full text link
    Density functional theory, when applied to systems with T0T\neq 0, is based on the grand canonical extension of the Hohenberg-Kohn-Sham theorem due to Mermin (HKSM theorem). While a straightforward canonical ensemble generalization fails, work in nanopore systems could certainly benefit from such extension. We show that, if the asymptotic behaviour of the canonical distribution functions is taken into account, the HKSM theorem can be extended to the canonical ensemble. We generate NN-modified correlation and distribution functions hierarchies and prove that, if they are employed, either a modified external field or the density profiles can be indistinctly used as independent variables. We also write down the NN% -modified free energy functional and prove that its minimum is reached when the equilibrium values of the new hierarchy are used. This completes the extension of the HKSM theorem.Comment: revtex, to be submitted to Phys. Rev. Let

    Effects of magnetic field gradients on the aggregation dynamics of colloidal magnetic nanoparticles

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.We have used low-field H-1 nuclear-magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) to investigate the aggregation dynamics of magnetic particles in ionic ferrofluids (IFFs) in the presence of magnetic field gradients. At the beginning of the experiments, the measured NMR spectra were broad and asymmetric, exhibiting two features attributed to different dynamical environments of water protons, depending on the local strength of the field gradients. Hence, the spatial redistribution of the magnetic particles in the ferrofluid caused by the presence of an external magnetic field in a time scale of minutes can be monitored in real time, following the changes in the features of the NMR spectra during a period of about an hour. As previously reported [Heinrich et al., Phys. Rev. Lett., 2011, 106, 208301], in the homogeneous magnetic field of a NMR spectrometer, the aggregation of the particles of the IFF proceeds in two stages. The first stage corresponds to the gradual aggregation of monomers prior to and during the formation of chain-like structures. The second stage proceeds after the chains have reached a critical average length, favoring lateral association of the strings into hexagonal zipped-chain superstructures or bundles. In this work, we focus on the influence of a strongly inhomogeneous magnetic field on the aforementioned aggregation dynamics. The main observation is that, as the sample is immersed in a certain magnetic field gradient and kept there for a time tinh, magnetophoresis rapidly converts the ferrofluid into an aggregation state which finds its correspondence to a state on the evolution curve of the pristine sample in a homogeneous field. From the degree of aggregation reached at the time tinh, the IFF sample just evolves thereafter in the homogeneous field of the NMR spectrometer in exactly the same way as the pristine sample. The final equilibrium state always consists of a colloidal suspension of zipped-chain bundles with the chain axes aligned along the magnetic field direction.DFG, SPP 1681, Feldgesteuerte Partikel-Matrix-Wechselwirkungen: Erzeugung, skalenübergreifende Modellierung und Anwendung magnetischer Hybridmaterialie
    corecore