915 research outputs found
Non-equilibrium condensation and coarsening of field-driven dipolar colloids
In colloidal suspensions, self-organization processes can be easily fueled by
external fields. One particularly interesting class of phenomena occurs in
monolayers of dipolar particles that are driven by rotating external fields.
Here we report results from a computer simulation study of such systems
focusing on the clustering behavior also observed in recent experiments. The
key result of this paper is a novel interpretation of this pattern formation
phenomenon: We show the clustering to be a by-product of a vapor-liquid first
order phase transition. In fact, the observed dynamic coarsening process
corresponds to the spindodal demixing that occurs during such a transitionComment: 6 pages, 5 figure
Nanotribology of biopolymer brushes in aqueous solution using dissipative particle dynamics simulations: an application to PEG covered liposomes in theta solvent
We undertake the investigation of sheared polymer chains grafted on flat
surfaces to model liposomes covered with polyethylene glycol brushes as a case
study for the mechanisms of efficient drug delivery in biologically relevant
situations, for example, as carriers for topical treatments of illnesses in the
human vasculature. For these applications, specific rheological properties are
required, such as low viscosity at high shear rate to improve the transport of
the liposomes. Therefore non - equilibrium, DPD simulations of polymer brushes
of various length and shear rates are performed to obtain the average viscosity
and friction coefficient of the system as functions of the shear rate and
polymerization degree under theta solvent conditions, and find that the brushes
experience shear thinning at large shear rates.The viscosity and the friction
coefficient are shown to obey scaling laws at high shear rate in theta solvent,
irrespective of the brushes degree of polymerization. These results confirm
recent scaling predictions and reproduce very well trends in measurements of
the viscosity at high shear of red blood cells in a liposome containing medium.Comment: 32 pages, 8 figure
Surface-charge-induced freezing of colloidal suspensions
Using grand-canonical Monte Carlo simulations we investigate the impact of
charged walls on the crystallization properties of charged colloidal
suspensions confined between these walls. The investigations are based on an
effective model focussing on the colloids alone. Our results demonstrate that
the fluid-wall interaction stemming from charged walls has a crucial impact on
the fluid's high-density behavior as compared to the case of uncharged walls.
In particular, based on an analysis of in-plane bond order parameters we find
surface-charge-induced freezing and melting transitions
Non-linear rheology of active particle suspensions: Insights from an analytical approach
We consider active suspensions in the isotropic phase subjected to a shear
flow. Using a set of extended hydrodynamic equations we derive a variety of
{\em analytical} expressions for rheological quantities such as shear viscosity
and normal stress differences. In agreement to full-blown numerical
calculations and experiments we find a shear thickening or -thinning behaviour
depending on whether the particles are contractile or extensile. Moreover, our
analytical approach predicts that the normal stress differences can change
their sign in contrast to passive suspensions.Comment: 11 pages, 10 figures, appear in PR
First Stars. I. Evolution without mass loss
The first generation of stars was formed from primordial gas. Numerical
simulations suggest that the first stars were predominantly very massive, with
typical masses M > 100 Mo. These stars were responsible for the reionization of
the universe, the initial enrichment of the intergalactic medium with heavy
elements, and other cosmological consequences. In this work, we study the
structure of Zero Age Main Sequence stars for a wide mass and metallicity range
and the evolution of 100, 150, 200, 250 and 300 Mo galactic and pregalactic Pop
III very massive stars without mass loss, with metallicity Z=10E-6 and 10E-9,
respectively. Using a stellar evolution code, a system of 10 equations together
with boundary conditions are solved simultaneously. For the change of chemical
composition, which determines the evolution of a star, a diffusion treatment
for convection and semiconvection is used. A set of 30 nuclear reactions are
solved simultaneously with the stellar structure and evolution equations.
Several results on the main sequence, and during the hydrogen and helium
burning phases, are described. Low metallicity massive stars are hotter and
more compact and luminous than their metal enriched counterparts. Due to their
high temperatures, pregalactic stars activate sooner the triple alpha reaction
self-producing their own heavy elements. Both galactic and pregalactic stars
are radiation pressure dominated and evolve below the Eddington luminosity
limit with short lifetimes. The physical characteristics of the first stars
have an important influence in predictions of the ionizing photon yields from
the first luminous objects; also they develop large convective cores with
important helium core masses which are important for explosion calculations.Comment: 17 pages, 24 figures, 2 table
Fluids of hard ellipsoids: Phase diagram including a nematic instability from Percus-Yevick theory
An important aspect of molecular fluids is the relation between orientation
and translation parts of the two-particle correlations. Especially the detailed
knowledge of the influence of orientation correlations is needed to explain and
calculate in detail the occurrence of a nematic phase.
The simplest model system which shows both orientation and translation
correlations is a system of hard ellipsoids. We investigate an isotropic fluid
formed of hard ellipsoids with Percus-Yevick theory.
Solving the Percus-Yevick equations self-consistently in the high density
regime gives a clear criterion for a nematic instability. We calculate in
detail the equilibrium phase diagram for a fluid of hard ellipsoids of
revolution. Our results compare well with Monte Carlo Simulations and density
functional theory.Comment: 7 pages including 4 figure
Self-assembly of amphiphilic Janus particles at planar walls: A density functional study
We investigate the structure formation of amphiphilic molecules at planar
walls using density functional theory. The molecules are modeled as (hard)
spheres composed of a hydrophilic and hydrophobic part. The orientation of the
resulting Janus-particles is described as a vector representing an internal
degree of freedom. Our density functional approach involves Fundamental Measure
Theory combined with a mean-field approximation for the anisotropic
interaction. Considering neutral, hydrophilic and hydrophobic walls, we study
the adsorption of the particles, focussing on the competition between the
surface field and interact ion-induced ordering phenomena. Finally, we consider
systems confined between two planar walls. It is shown that the anisotropic
Janus interaction yields pronounced frustration effects at low temperatures.Comment: 11 page
Density functional formalism in the canonical ensemble
Density functional theory, when applied to systems with , is based
on the grand canonical extension of the Hohenberg-Kohn-Sham theorem due to
Mermin (HKSM theorem). While a straightforward canonical ensemble
generalization fails, work in nanopore systems could certainly benefit from
such extension. We show that, if the asymptotic behaviour of the canonical
distribution functions is taken into account, the HKSM theorem can be extended
to the canonical ensemble. We generate -modified correlation and
distribution functions hierarchies and prove that, if they are employed, either
a modified external field or the density profiles can be indistinctly used as
independent variables. We also write down the % -modified free energy
functional and prove that its minimum is reached when the equilibrium values of
the new hierarchy are used. This completes the extension of the HKSM theorem.Comment: revtex, to be submitted to Phys. Rev. Let
Effects of magnetic field gradients on the aggregation dynamics of colloidal magnetic nanoparticles
Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.We have used low-field H-1 nuclear-magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) to investigate the aggregation dynamics of magnetic particles in ionic ferrofluids (IFFs) in the presence of magnetic field gradients. At the beginning of the experiments, the measured NMR spectra were broad and asymmetric, exhibiting two features attributed to different dynamical environments of water protons, depending on the local strength of the field gradients. Hence, the spatial redistribution of the magnetic particles in the ferrofluid caused by the presence of an external magnetic field in a time scale of minutes can be monitored in real time, following the changes in the features of the NMR spectra during a period of about an hour. As previously reported [Heinrich et al., Phys. Rev. Lett., 2011, 106, 208301], in the homogeneous magnetic field of a NMR spectrometer, the aggregation of the particles of the IFF proceeds in two stages. The first stage corresponds to the gradual aggregation of monomers prior to and during the formation of chain-like structures. The second stage proceeds after the chains have reached a critical average length, favoring lateral association of the strings into hexagonal zipped-chain superstructures or bundles. In this work, we focus on the influence of a strongly inhomogeneous magnetic field on the aforementioned aggregation dynamics. The main observation is that, as the sample is immersed in a certain magnetic field gradient and kept there for a time tinh, magnetophoresis rapidly converts the ferrofluid into an aggregation state which finds its correspondence to a state on the evolution curve of the pristine sample in a homogeneous field. From the degree of aggregation reached at the time tinh, the IFF sample just evolves thereafter in the homogeneous field of the NMR spectrometer in exactly the same way as the pristine sample. The final equilibrium state always consists of a colloidal suspension of zipped-chain bundles with the chain axes aligned along the magnetic field direction.DFG, SPP 1681, Feldgesteuerte Partikel-Matrix-Wechselwirkungen: Erzeugung, skalenübergreifende Modellierung und Anwendung magnetischer Hybridmaterialie
- …