89,090 research outputs found
Monophyly of brachiopods and phoronids: reconciliation of molecular evidence with Linnaean classification (the subphylum Phoroniformea nov.)
Molecular phylogenetic analyses of aligned 18S rDNA gene sequences from articulate and inarticulate brachiopods representing all major extant lineages, an enhanced set of phoronids and several unrelated protostome taxa, confirm previous indications that in such data, brachiopod and phoronids form a well-supported clade that (on previous evidence) is unambiguously affiliated with protostomes rather than deuterostomes. Within the brachiopod-phoronid clade, an association between phoronids and inarticulate brachiopods is moderately well supported, whilst a close relationship between phoronids and craniid inarticulates is weakly indicated. Brachiopod-phoronid monophyly is reconciled with the most recent Linnaean classification of brachiopods by abolition of the phylum Phoronida and rediagnosis of the phylum Brachiopoda to include tubiculous, shell-less forms. Recognition that brachiopods and phoronids are close genealogical allies of protostome phyla such as molluscs and annelids, but are much more distantly related to deuterostome phyla such as echinoderms and chordates, implies either (or both) that the morphology and ontogeny of blastopore, mesoderm and coelom formation have been widely misreported or misinterpreted, or that these characters have been subject to extensive homoplasy. This inference, if true, undermines virtually all morphology-based reconstructions of phylogeny made during the past century or more
Scalar leptoquarks and the rare B meson decays
We study some rare decays of meson involving the quark level transition
in the scalar leptoquark model. We constrain the
leptoquark parameter space using the recently measured branching ratios of
processes. Using such parameters, we obtain the
branching ratios, direct CP violation parameters and isospin asymmetries in and processes. We also obtain the
branching ratios for some lepton flavour violating decays .
We find that the various anomalies associated with the isospin asymmetries of
process can be explained in the scalar leptoquark model.Comment: 28 pages, 7 figures. typos corrected, to appear in Phys. Rev.
Anomalous Light Scattering by Topological -symmetric Particle Arrays
Robust topological edge modes may evolve into complex-frequency modes when a
physical system becomes non-Hermitian. We show that, while having negligible
forward optical extinction cross section, a conjugate pair of such complex
topological edge modes in a non-Hermitian -symmetric system can
give rise to an anomalous sideway scattering when they are simultaneously
excited by a plane wave. We propose a realization of such scattering state in a
linear array of subwavelength resonators coated with gain media. The prediction
is based on an analytical two-band model and verified by rigorous numerical
simulation using multiple-multipole scattering theory. The result suggests an
extreme situation where leakage of classical information is unnoticeable to the
transmitter and the receiver when such a -symmetric unit is
inserted into the communication channel.Comment: 16 pages, 8 figure
The origin of galaxy scaling laws in LCDM
It has long been recognized that tight relations link the mass, size, and
characteristic velocity of galaxies. These scaling laws reflect the way in
which baryons populate, cool, and settle at the center of their host dark
matter halos; the angular momentum they retain in the assembly process; as well
as the radial distribution and mass scalings of the dark matter halos. There
has been steady progress in our understanding of these processes in recent
years, mainly as sophisticated N-body and hydrodynamical simulation techniques
have enabled the numerical realization of galaxy models of ever increasing
complexity, realism, and appeal. These simulations have now clarified the
origin of these galaxy scaling laws in a universe dominated by cold dark
matter: these relations arise from the tight (but highly non-linear) relations
between (i) galaxy mass and halo mass, (ii) galaxy size and halo characteristic
radius; and (iii) from the self-similar mass nature of cold dark matter halo
mass profiles. The excellent agreement between simulated and observed galaxy
scaling laws is a resounding success for the LCDM cosmogony on the highly
non-linear scales of individual galaxies.Comment: Contribution to the Proceedings of the Simons Conference
"Illuminating Dark Matter", held in Kruen, Germany, in May 2018, eds. R.
Essig, K. Zurek, J. Fen
Wave-packet treatment of neutrino oscillations and its implications on determining the neutrino mass hierarchy
We derive the neutrino flavor transition probabilities with the neutrino
treated as a wave packet. The decoherence and dispersion effects from the
wave-packet treatment show up as damping and phase-shifting of the plane-wave
neutrino oscillation patterns. If the energy uncertainty in the initial
neutrino wave packet is larger than around 0.01 of the neutrino energy, the
decoherence and dispersion effects would degrade the sensitivity of reactor
neutrino experiments to mass hierarchy measurement to lower than 3
confidence level
- …