2,276 research outputs found
Semiquantum key distribution using entangled states
Recently, Boyer et al. presented a novel semiquantum key distribution
protocol [M. Boyer, D. Kenigsberg, and T. Mor, Phys. Rev. Lett. 99, 140501
(2007)], by using four quantum states, each of which is randomly prepared by Z
basis or X basis. Here we present a semiquantum key distribution protocol by
using entangled states in which quantum Alice shares a secret key with
classical Bob. We also show the protocol is secure against eavesdropping.Comment: 6 page
Recommended from our members
Dual blockage of STAT3 and ERK1/2 eliminates radioresistant GBM cells.
Radiotherapy (RT) is the major modality for control of glioblastoma multiforme (GBM), the most aggressive brain tumor in adults with poor prognosis and low patient survival rate. To improve the RT efficacy on GBM, the mechanism causing tumor adaptive radioresistance which leads to the failure of tumor control and lethal progression needs to be further elucidated. Here, we conducted a comparative analysis of RT-treated recurrent tumors versus primary counterparts in GBM patients, RT-treated orthotopic GBM tumors xenografts versus untreated tumors and radioresistant GBM cells versus wild type cells. The results reveal that activation of STAT3, a well-defined redox-sensitive transcriptional factor, is causally linked with GBM adaptive radioresistance. Database analysis also agrees with the worse prognosis in GBM patients due to the STAT3 expression-associated low RT responsiveness. However, although the radioresistant GBM cells can be resensitized by inhibition of STAT3, a fraction of radioresistant cells can still survive the RT combined with STAT3 inhibition or CRISPR/Cas9-mediated STAT3 knockout. A complementally enhanced activation of ERK1/2 by STAT3 inhibition is identified responsible for the survival of the remaining resistant tumor cells. Dual inhibition of ERK1/2 and STAT3 remarkably eliminates resistant GBM cells and inhibits tumor regrowth. These findings demonstrate a previously unknown feature ofSTAT3-mediated ERK1/2 regulation and an effective combination of two targets in resensitizing GBM to RT
Trapped interacting two-component bosons
In this paper we solve one dimensional trapped SU(2) bosons with repulsive
-function interaction by means of Bethe-ansatz method. The features of
ground state and low-lying excited states are studied by numerical and analytic
methods. We show that the ground state is an isospin "ferromagnetic" state
which differs from spin-1/2 fermions system. There exist three quasi-particles
in the excitation spectra, and both holon-antiholon and holon-isospinon
excitations are gapless for large systems. The thermodynamics equilibrium of
the system at finite temperature is studied by thermodynamic Bethe ansatz. The
thermodynamic quantities, such as specific heat etc. are obtained for the case
of strong coupling limit.Comment: 15 pages, 9 figure
Plasmoid ejection and secondary current sheet generation from magnetic reconnection in laser-plasma interaction
Reconnection of the self-generated magnetic fields in laser-plasma
interaction was first investigated experimentally by Nilson {\it et al.} [Phys.
Rev. Lett. 97, 255001 (2006)] by shining two laser pulses a distance apart on a
solid target layer. An elongated current sheet (CS) was observed in the plasma
between the two laser spots. In order to more closely model magnetotail
reconnection, here two side-by-side thin target layers, instead of a single
one, are used. It is found that at one end of the elongated CS a fan-like
electron outflow region including three well-collimated electron jets appears.
The ( MeV) tail of the jet energy distribution exhibits a power-law
scaling. The enhanced electron acceleration is attributed to the intense
inductive electric field in the narrow electron dominated reconnection region,
as well as additional acceleration as they are trapped inside the rapidly
moving plasmoid formed in and ejected from the CS. The ejection also induces a
secondary CS
Quantum signature scheme with single photons
Quantum digital signature combines quantum theory with classical digital
signature. The main goal of this field is to take advantage of quantum effects
to provide unconditionally secure signature. We present a quantum signature
scheme with message recovery without using entangle effect. The most important
property of the proposed scheme is that it is not necessary for the scheme to
use Greenberger-Horne-Zeilinger states. The present scheme utilizes single
photons to achieve the aim of signature and verification. The security of the
scheme relies on the quantum one-time pad and quantum key distribution. The
efficiency analysis shows that the proposed scheme is an efficient scheme
Thermodynamics of Kondo Model with Electronic Interactions
On the basis of Bethe ansatz solution of one dimensional Kondo model with
electronic interaction, the thermodynamics equilibrium of the system in finite
temperature is studied in terms of the strategy of Yang and Yang. The string
hypothesis in the spin rapidity is discussed extensively. The thermodynamics
quantities, such as specific heat and magnetic susceptibility, are obtained.Comment: 8 pages, 0 figures, Revte
Multiparty simultaneous quantum identity authentication based on entanglement swapping
We present a multiparty simultaneous quantum identity authentication protocol
based on entanglement swapping. In our protocol, the multi-user can be
authenticated by a trusted third party simultaneously
Influence of interaction between surface-modified magnetic nanoparticles with infectious biofilm components in artificial channel digging and biofilm eradication by antibiotics in vitro and in vivo
Magnetic targeting of antimicrobial-loaded magnetic nanoparticles to micrometer-sized infectious biofilms is challenging. Bacterial biofilms possess water channels that facilitate transport of nutrient and metabolic waste products, but are insufficient to allow deep penetration of antimicrobials and bacterial killing. Artificial channel digging in infectious biofilms involves magnetically propelling nanoparticles through a biofilm to dig additional channels to enhance antimicrobial penetration. This does not require precise targeting. However, it is not known whether interaction of magnetic nanoparticles with biofilm components impacts the efficacy of antibiotics after artificial channel digging. Here, we functionalized magnetic-iron-oxide-nanoparticles (MIONPs) with polydopamine (PDA) to modify their interaction with staphylococcal pathogens and extracellular-polymeric-substances (EPS) and relate the interaction with in vitro biofilm eradication by gentamicin after magnetic channel digging. PDA-modified MIONPs had less negative zeta potentials than unmodified MIONPs due to the presence of amino groups and accordingly more interaction with negatively charged staphylococcal cell surfaces than unmodified MIONPs. Neither unmodified nor PDA-modified MIONPs interacted with EPS. Concurrently, use of non-interacting unmodified MIONPs for artificial channel digging in in vitro grown staphylococcal biofilms enhanced the efficacy of gentamicin more than the use of interacting, PDA-modified MIONPs. In vivo experiments in mice using a sub-cutaneous infection model confirmed that non-interacting, unmodified MIONPs enhanced eradication by gentamicin of Staphylococcus aureus Xen36 biofilms about 10 fold. Combined with the high biocompatibility of magnetic nanoparticles, these results form an important step in understanding the mechanism of artificial channel digging in infectious biofilms for enhancing antibiotic efficacy in hard-to-treat infectious biofilms in patients
Quantum broadcast communication
Broadcast encryption allows the sender to securely distribute his/her secret
to a dynamically changing group of users over a broadcast channel. In this
paper, we just consider a simple broadcast communication task in quantum
scenario, which the central party broadcasts his secret to multi-receiver via
quantum channel. We present three quantum broadcast communication schemes. The
first scheme utilizes entanglement swapping and Greenberger-Horne-Zeilinger
state to realize a task that the central party broadcasts his secret to a group
of receivers who share a group key with him. In the second scheme, based on
dense coding, the central party broadcasts the secret to multi-receiver who
share each of their authentication key with him. The third scheme is a quantum
broadcast communication scheme with quantum encryption, which the central party
can broadcast the secret to any subset of the legal receivers
Phase diagram and symmetry breaking of SU(4) spin-orbital chain in a generalized external field
The ground state phases of a one-dimensional SU(4) spin-orbital Hamiltonian
in a generalized external field are studied on the basis of Bethe-ansatz
solution. Introducing three Land\'e factors for spin, orbital and their
products in the SU(4) Zeeman term, we discuss systematically the various
symmetry breaking. The magnetization versus external field are obtained by
solving Bethe-ansatz equations numerically. The phase diagrams corresponding to
distinct residual symmetries are given by means of both numerical and
analytical methods.Comment: Revtex4, 16 pages, 7 figure
- …