131 research outputs found

    Approximating the partition function of the ferromagnetic Potts model

    Full text link
    We provide evidence that it is computationally difficult to approximate the partition function of the ferromagnetic q-state Potts model when q>2. Specifically we show that the partition function is hard for the complexity class #RHPi_1 under approximation-preserving reducibility. Thus, it is as hard to approximate the partition function as it is to find approximate solutions to a wide range of counting problems, including that of determining the number of independent sets in a bipartite graph. Our proof exploits the first order phase transition of the "random cluster" model, which is a probability distribution on graphs that is closely related to the q-state Potts model.Comment: Minor correction

    Sublinear-Time Algorithms for Monomer-Dimer Systems on Bounded Degree Graphs

    Full text link
    For a graph GG, let Z(G,λ)Z(G,\lambda) be the partition function of the monomer-dimer system defined by kmk(G)λk\sum_k m_k(G)\lambda^k, where mk(G)m_k(G) is the number of matchings of size kk in GG. We consider graphs of bounded degree and develop a sublinear-time algorithm for estimating logZ(G,λ)\log Z(G,\lambda) at an arbitrary value λ>0\lambda>0 within additive error ϵn\epsilon n with high probability. The query complexity of our algorithm does not depend on the size of GG and is polynomial in 1/ϵ1/\epsilon, and we also provide a lower bound quadratic in 1/ϵ1/\epsilon for this problem. This is the first analysis of a sublinear-time approximation algorithm for a # P-complete problem. Our approach is based on the correlation decay of the Gibbs distribution associated with Z(G,λ)Z(G,\lambda). We show that our algorithm approximates the probability for a vertex to be covered by a matching, sampled according to this Gibbs distribution, in a near-optimal sublinear time. We extend our results to approximate the average size and the entropy of such a matching within an additive error with high probability, where again the query complexity is polynomial in 1/ϵ1/\epsilon and the lower bound is quadratic in 1/ϵ1/\epsilon. Our algorithms are simple to implement and of practical use when dealing with massive datasets. Our results extend to other systems where the correlation decay is known to hold as for the independent set problem up to the critical activity

    Quantum speedup of classical mixing processes

    Get PDF
    Most approximation algorithms for #P-complete problems (e.g., evaluating the permanent of a matrix or the volume of a polytope) work by reduction to the problem of approximate sampling from a distribution π\pi over a large set §\S. This problem is solved using the {\em Markov chain Monte Carlo} method: a sparse, reversible Markov chain PP on §\S with stationary distribution π\pi is run to near equilibrium. The running time of this random walk algorithm, the so-called {\em mixing time} of PP, is O(δ1log1/π)O(\delta^{-1} \log 1/\pi_*) as shown by Aldous, where δ\delta is the spectral gap of PP and π\pi_* is the minimum value of π\pi. A natural question is whether a speedup of this classical method to O(δ1log1/π)O(\sqrt{\delta^{-1}} \log 1/\pi_*), the diameter of the graph underlying PP, is possible using {\em quantum walks}. We provide evidence for this possibility using quantum walks that {\em decohere} under repeated randomized measurements. We show: (a) decoherent quantum walks always mix, just like their classical counterparts, (b) the mixing time is a robust quantity, essentially invariant under any smooth form of decoherence, and (c) the mixing time of the decoherent quantum walk on a periodic lattice Znd\Z_n^d is O(ndlogd)O(n d \log d), which is indeed O(δ1log1/π)O(\sqrt{\delta^{-1}} \log 1/\pi_*) and is asymptotically no worse than the diameter of Znd\Z_n^d (the obvious lower bound) up to at most a logarithmic factor.Comment: 13 pages; v2 revised several part

    Hitting Time of Quantum Walks with Perturbation

    Full text link
    The hitting time is the required minimum time for a Markov chain-based walk (classical or quantum) to reach a target state in the state space. We investigate the effect of the perturbation on the hitting time of a quantum walk. We obtain an upper bound for the perturbed quantum walk hitting time by applying Szegedy's work and the perturbation bounds with Weyl's perturbation theorem on classical matrix. Based on the definition of quantum hitting time given in MNRS algorithm, we further compute the delayed perturbed hitting time (DPHT) and delayed perturbed quantum hitting time (DPQHT). We show that the upper bound for DPQHT is actually greater than the difference between the square root of the upper bound for a perturbed random walk and the square root of the lower bound for a random walk.Comment: 9 page

    Symmetries and noise in quantum walk

    Full text link
    We study some discrete symmetries of unbiased (Hadamard) and biased quantum walk on a line, which are shown to hold even when the quantum walker is subjected to environmental effects. The noise models considered in order to account for these effects are the phase flip, bit flip and generalized amplitude damping channels. The numerical solutions are obtained by evolving the density matrix, but the persistence of the symmetries in the presence of noise is proved using the quantum trajectories approach. We also briefly extend these studies to quantum walk on a cycle. These investigations can be relevant to the implementation of quantum walks in various known physical systems. We discuss the implementation in the case of NMR quantum information processor and ultra cold atoms.Comment: 19 pages, 24 figures : V3 - Revised version to appear in Phys. Rev. A. - new section on quantum walk in a cycle include

    Network Structure, Topology and Dynamics in Generalized Models of Synchronization

    Full text link
    We explore the interplay of network structure, topology, and dynamic interactions between nodes using the paradigm of distributed synchronization in a network of coupled oscillators. As the network evolves to a global steady state, interconnected oscillators synchronize in stages, revealing network's underlying community structure. Traditional models of synchronization assume that interactions between nodes are mediated by a conservative process, such as diffusion. However, social and biological processes are often non-conservative. We propose a new model of synchronization in a network of oscillators coupled via non-conservative processes. We study dynamics of synchronization of a synthetic and real-world networks and show that different synchronization models reveal different structures within the same network

    Counting approximately-shortest paths in directed acyclic graphs

    Full text link
    Given a directed acyclic graph with positive edge-weights, two vertices s and t, and a threshold-weight L, we present a fully-polynomial time approximation-scheme for the problem of counting the s-t paths of length at most L. We extend the algorithm for the case of two (or more) instances of the same problem. That is, given two graphs that have the same vertices and edges and differ only in edge-weights, and given two threshold-weights L_1 and L_2, we show how to approximately count the s-t paths that have length at most L_1 in the first graph and length at most L_2 in the second graph. We believe that our algorithms should find application in counting approximate solutions of related optimization problems, where finding an (optimum) solution can be reduced to the computation of a shortest path in a purpose-built auxiliary graph

    Implementing the one-dimensional quantum (Hadamard) walk using a Bose-Einstein Condensate

    Full text link
    We propose a scheme to implement the simplest and best-studied version of quantum random walk, the discrete Hadamard walk, in one dimension using coherent macroscopic sample of ultracold atoms, Bose-Einstein condensate (BEC). Implementation of quantum walk using BEC gives access to the familiar quantum phenomena on a macroscopic scale. This paper uses rf pulse to implement Hadamard operation (rotation) and stimulated Raman transition technique as unitary shift operator. The scheme suggests implementation of Hadamard operation and unitary shift operator while the BEC is trapped in long Rayleigh range optical dipole trap. The Hadamard rotation and a unitary shift operator on BEC prepared in one of the internal state followed by a bit flip operation, implements one step of the Hadamard walk. To realize a sizable number of steps, the process is iterated without resorting to intermediate measurement. With current dipole trap technology it should be possible to implement enough steps to experimentally highlight the discrete quantum random walk using a BEC leading to further exploration of quantum random walks and its applications.Comment: 7 pages, 3 figure

    Uniform generation in trace monoids

    Full text link
    We consider the problem of random uniform generation of traces (the elements of a free partially commutative monoid) in light of the uniform measure on the boundary at infinity of the associated monoid. We obtain a product decomposition of the uniform measure at infinity if the trace monoid has several irreducible components-a case where other notions such as Parry measures, are not defined. Random generation algorithms are then examined.Comment: Full version of the paper in MFCS 2015 with the same titl

    Sorting signed circular permutations by super short reversals

    Get PDF
    We consider the problem of sorting a circular permutation by reversals of length at most 2, a problem that finds application in comparative genomics. Polynomial-time solutions for the unsigned version of this problem are known, but the signed version remained open. In this paper, we present the first polynomial-time solution for the signed version of this problem. Moreover, we perform an experiment for inferring distances and phylogenies for published Yersinia genomes and compare the results with the phylogenies presented in previous works.We consider the problem of sorting a circular permutation by reversals of length at most 2, a problem that finds application in comparative genomics. Polynomial-time solutions for the unsigned version of this problem are known, but the signed version rema9096272283FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIORCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO2013/08293-72014/04718-6306730/2012-0; 477692/2012-5; 483370/2013-411th International Symposium on Bioinformatics Research and Application
    corecore