29,933 research outputs found

    Pulsed Adiabatic Photoassociation via Scattering Resonances

    Full text link
    We develop the theory for the Adiabatic Raman Photoassociation (ARPA) of ultracold atoms to form ultracold molecules in the presence of scattering resonances. Based on a computational method in which we replace the continuum with a discrete set of "effective modes", we show that the existence of resonances greatly aids in the formation of deeply bound molecular states. We illustrate our general theory by computationally studying the formation of 85^{85}Rb2_2 molecules from pairs of colliding ultracold 85^{85}Rb atoms. The single-event transfer yield is shown to have a near-unity value for wide resonances, while the ensemble-averaged transfer yield is shown to be higher for narrow resonances. The ARPA yields are compared with that of (the experimentally measured) "Feshbach molecule" magneto-association. Our findings suggest that an experimental investigation of ARPA at sub-μ\muK temperatures is warranted.Comment: 20 pages, 11 figure

    Vacuum effective action and inflation

    Get PDF
    We consider vacuum quantum effects in the Early Universe, which may lead to inflation. The inflation is a direct consequence of the supposition that, at high energies, all the particles can be described by the weakly interacting, massless, conformally invariant fields. We discuss, from the effective field theory point of view, the stability of inflation, transition to the FRW solution, and also possibility to study metric and density perturbations.Comment: 6 pages, LaTeX, no figures. Contribution to the Proceedings of the X Jorge Andre Swieca school in Particles and Fields. To be published in World Scientifi

    Heat capacity of the site-diluted spin dimer system Ba3(Mn1-xVx)2O8

    Full text link
    Heat capacity and susceptibility measurements have been performed on the diluted spin dimer compound Ba3(Mn1-xVx)2O8. The parent compound Ba3Mn2O8 is a spin dimer system based on pairs of antiferromagnetically coupled S = 1, 3d2 Mn5+ ions such that the zero field groundstate is a product of singlets. Substitution of non-magnetic S = 0, 3d0 V5+ ions leads to an interacting network of unpaired Mn moments, the low temperature properties of which are explored in the limit of small concentrations, 0<x<0.05. The zero-field heat capacity of this diluted system reveals a progressive removal of magnetic entropy over an extended range of temperatures, with no evidence for a phase transition. The concentration dependence does not conform to expectations for a spin glass state. Rather, the data suggest a low temperature random singlet phase, reflecting the hierarchy of exchange energies found in this system.Comment: Full Publication Citation Include

    Color superconducting matter in a magnetic field

    Full text link
    We investigate the effect of a magnetic field on cold dense three-flavor quark matter using an effective model with four-Fermi interactions with electric and color neutrality taken into account. The gap parameters Delta_1, Delta_2, and Delta_3 representing respectively the predominant pairing between down and strange (d-s) quarks, strange and up (s-u) quarks, and up and down (u-d) quarks, show the de Haas-van Alphen effect, i.e. oscillatory behavior as a function of the modified magnetic field B that can penetrate the color superconducting medium. Without applying electric and color neutrality we find Delta_2 \approx Delta_3 >> Delta_1 for 2 e B / mu_q^2, where e is the modified electromagnetic coupling constant and mu_q is one third of the baryon chemical potential. Because the average Fermi surface for each pairing is affected by taking into account neutrality, the gap structure changes drastically in this case; we find Delta_1 >> Delta_2 \approx Delta_3 for 2 e B > mu_q^2. We point out that the magnetic fields as strong as presumably existing inside magnetars might induce significant deviations from the gap structure Delta_1 \approx Delta_2 \approx Delta_3 at zero magnetic field.Comment: 5 pages, 3 figure

    Quantum corrections to gravity and their implications for cosmology and astrophysics

    Full text link
    The quantum contributions to the gravitational action are relatively easy to calculate in the higher derivative sector of the theory. However, the applications to the post-inflationary cosmology and astrophysics require the corrections to the Einstein-Hilbert action and to the cosmological constant, and those we can not derive yet in a consistent and safe way. At the same time, if we assume that these quantum terms are covariant and that they have relevant magnitude, their functional form can be defined up to a single free parameter, which can be defined on the phenomenological basis. It turns out that the quantum correction may lead, in principle, to surprisingly strong and interesting effects in astrophysics and cosmology.Comment: 15 pages, LaTeX, WS style, contribution to the Proceedings of the QFEXT-2011 conference in the Centro de Ciencias de Benasque Pedro Pasqual, Spai

    Nonlinearity and pixel shifting effects in HXRG infrared detectors

    Get PDF
    We study the nonlinearity (NL) in the conversion from charge to voltage in infrared detectors (HXRG) for use in precision astronomy. We present laboratory measurements of the NL function of a H2RG detector and discuss the accuracy to which it would need to be calibrated in future space missions to perform cosmological measurements through the weak gravitational lensing technique. In addition, we present an analysis of archival data from the infrared H1RG detector of the Wide Field Camera 3 in the Hubble Space Telescope that provides evidence consistent with the existence of a sensor effect analogous to the brighter-fatter effect found in Charge-Coupled Devices. We propose a model in which this effect could be understood as shifts in the effective pixel boundaries, and discuss prospects of laboratory measurements to fully characterize this effect.Comment: Accepted for publication in the Journal of Instrumentation (JINST). Part of "Precision Astronomy with Fully Depleted CCDs" (Dec 1-2, 2016), Brookhaven National Laboratory, Upton, NY, US
    corecore