1,510 research outputs found

    Temperature Effects on Development of Three Cereal Aphid Parasitoids (Hymenoptera: Aphidiidae)

    Get PDF
    Temperature is an important climatological variable that influences the biology and ecology of insects. Poor climatic adaptation can limit the effectiveness of parasitic insects in biological control. Two exotic parasites (Syrian Diaeretiella rapae (M\u27Intosh) and Argentinean Aphidius colemani Viereck) imported for biological control of the Russian wheat aphid, Diuraphis noxia (Mordvilko), and one native parasite (Diaeretiella rapae) were reared in growth chambers in three fluctuating temperature regimes with average daily temperatures of 12, 18, and 24°C. Estimates of temperature thresholds for immature development were 3.3, 3.5, and 2.8°C, for Oklahoman D. rapae, Syrian D. rapae, and A. colemani, respectively. Estimates of thermal require- ments for development from egg to adult were 297, 278, and 301 degree-days for the three parasitoids. Dry weights of adults reared in different fluctuating temperature regimes did not differ significantly among sexes, but adults from regimes with low average temperatures of 12 and 18°C had significantly greater weights than those reared in a regime with an average temperature of 24°C. Results suggest that developmental response to temperature will not limit the effectiveness of the exotic parasites in biological control

    Parasitism, Adult Emergence, Sex Ratio, and Size of \u3ci\u3eAphidius Colemani\u3c/i\u3e (Hymenoptera: Aphidiidae) on Several Aphid Species

    Get PDF
    Aphidius colemani Viereck parasitizes several economically important aphid pests of small grain crops including the greenbug, Schizaphis graminum and the Russian wheat aphid, Diuraphis noxia. The ability of A. colemani to switch from S. graminum to several species of aphids common to agricultural and associated non-agricultural ecosystems in the Great Plains, and the effects of host-change on several biological parameters that influence population growth rate were determined. Female A. colemani parasitized and developed to adulthood in nine of 14 aphid species to which they were exposed in the laboratory. All small grain feeding aphids except Sipha flava were parasi­tized. Two sunflower feeding species (Aphis nerii and A. helianthi) and two crucifer feeding species (Lipaphis erysimi and Brevicoryne brassicae) were parasitized, as was the cotton aphid. Aphis gossypii. The average percentage of aphids parasitized differed significantly among host aphid species. as did the percentage of parasitoids surviving from the mummy to the adult stage and the time required for immature development. The sex ratio of adults that enclosed from the various hosts did not differ significantly among species. Dry weights of adult parasitoids differed significantly among host species. Adults from S. graminum weighed most (0.054 mg) while those emerging from A. helianthi weighed least (0.020 mg). Results are discussed in terms of strategies for classical biological control of aphid pests of cereals

    The stability of cosmological scaling solutions

    Full text link
    We study the stability of cosmological scaling solutions within the class of spatially homogeneous cosmological models with a perfect fluid subject to the equation of state p_gamma=(gamma-1) rho_gamma (where gamma is a constant satisfying 0 < gamma < 2) and a scalar field with an exponential potential. The scaling solutions, which are spatially flat isotropic models in which the scalar field energy density tracks that of the perfect fluid, are of physical interest. For example, in these models a significant fraction of the current energy density of the Universe may be contained in the scalar field whose dynamical effects mimic cold dark matter. It is known that the scaling solutions are late-time attractors (i.e., stable) in the subclass of flat isotropic models. We find that the scaling solutions are stable (to shear and curvature perturbations) in generic anisotropic Bianchi models when gamma < 2/3. However, when gamma > 2/3, and particularly for realistic matter with gamma >= 1, the scaling solutions are unstable; essentially they are unstable to curvature perturbations, although they are stable to shear perturbations. We briefly discuss the physical consequences of these results.Comment: AMSTeX, 7 pages, re-submitted to Phys Rev Let

    Generalized Assisted Inflation

    Get PDF
    We obtain a new class of exact cosmological solutions for multi-scalar fields with exponential potentials. We generalize the assisted inflation solutions previously obtained, and demonstrate how they are modified when there exist cross-couplings between the fields, such as occur in supergravity inspired cosmological models.Comment: 5 page

    Chaotic Friedmann-Robertson-Walker Cosmology

    Get PDF
    We show that the dynamics of a spatially closed Friedmann - Robertson - Walker Universe conformally coupled to a real, free, massive scalar field, is chaotic, for large enough field amplitudes. We do so by proving that this system is integrable under the adiabatic approximation, but that the corresponding KAM tori break up when non adiabatic terms are considered. This finding is confirmed by numerical evaluation of the Lyapunov exponents associated with the system, among other criteria. Chaos sets strong limitations to our ability to predict the value of the field at the Big Crunch, from its given value at the Big Bang. (Figures available on request)Comment: 28 pages, 11 figure

    Cyclin D1 repressor domain mediates proliferation and survival in prostate cancer.

    Get PDF
    Regulation of the androgen receptor (AR) is critical to prostate cancer (PCa) development; therefore, AR is the first line therapeutic target for disseminated tumors. Cell cycle-dependent accumulation of cyclin D1 negatively modulates the transcriptional regulation of AR through discrete, CDK4-independent mechanisms. The transcriptional corepressor function of cyclin D1 resides within a defined motif termed repressor domain (RD), and it was hypothesized that this motif could be utilized as a platform to develop new strategies for blocking AR function. Here, we demonstrate that expression of the RD peptide is sufficient to disrupt AR transcriptional activation of multiple, prostate-specific AR target genes. Importantly, these actions are sufficient to specifically inhibit S-phase progression in AR-positive PCa cells, but not in AR-negative cells or tested AR-positive cells of other lineages. As expected, impaired cell cycle progression resulted in a suppression of cell doubling. Additionally, cell death was observed in AR-positive cells that maintain androgen dependence and in a subset of castrate-resistant PCa cells, dependent on Akt activation status. Lastly, the ability of RD to cooperate with existing hormone therapies was examined, which revealed that RD enhanced the cellular response to an AR antagonist. Together, these data demonstrate that RD is sufficient to disrupt AR-dependent transcriptional and proliferative responses in PCa, and can enhance efficacy of AR antagonists, thus establishing the impetus for development of RD-based mimetics
    corecore