47 research outputs found

    3640 Unique EST Clusters from the Medaka Testis and Their Potential Use for Identifying Conserved Testicular Gene Expression in Fish and Mammals

    Get PDF
    BACKGROUND: The fish medaka is the first vertebrate capable of full spermatogenesis in vitro from self-renewing spermatogonial stem cells to motile test-tube sperm. Precise staging and molecular dissection of this process has been hampered by the lack of suitable molecular markers. METHODOLOGY AND PRINCIPAL FINDINGS: We have generated a normalized medaka testis cDNA library and obtained 7040 high quality sequences representing 3641 unique gene clusters. Among these, 1197 unique clusters are homologous to known genes, and 2444 appear to be novel genes. Ontology analysis shows that the 1197 gene products are implicated in diverse molecular and cellular processes. These genes include markers for all major types of testicular somatic and germ cells. Furthermore, markers were identified for major spermatogenic stages ranging from spermatogonial stem cell self-renewal to meiosis entry, progression and completion. Intriguingly, the medaka testis expresses at least 13 homologs of the 33 mouse X-chromosomal genes that are enriched in the testis. More importantly, we show that key components of several signaling pathways known to be important for testicular function in mammals are well represented in the medaka testicular EST collection. CONCLUSIONS/SIGNIFICANCE: Medaka exhibits a considerable similarity in testicular gene expression to mammals. The medaka testicular EST collection we obtained has wide range coverage and will not only consolidate our knowledge on the comparative analysis of known genes' functions in the testis but also provide a rich resource to dissect molecular events and mechanism of spermatogenesis in vivo and in vitro in medaka as an excellent vertebrate model

    A History of Discrete Event Simulation Programming Languages

    Get PDF
    The history of simulation programming languages is organized as a progression in periods of similar developments. The five periods, spanning 1955-1986, are labeled: The Period of Search (1955-1960); The Advent (1961-1965); The Formative Period (1966-1970); The Expansional Period (1971-1978); and The Period of Consolidation and Regeneration (1979-1986). The focus is on recognizing the people and places that have made important contributions in addition to the nature of the contribution. A balance between comprehensive and in-depth treatment has been reached by providing more detailed description of those languages which have or have had major use. Over 30 languages are mentioned, and numerous variations are described in the major contributors. A concluding summary notes the concepts and techniques either originating with simulation programming languages or given significant visibility by them

    213.Culture of mouse male germ cells for genetic manipulations

    No full text

    149. Smad3 DOSAGE INFLUENCES TESTICULAR MATURATION

    No full text

    023.Drivers of germ cell differentiation

    No full text

    Evaluation of austenitic-ferritic stainless steel wires for orthodontic applications

    No full text
    Several studies have shown that austenitic stainless steels are suitable for use in the final phases of orthodontic treatments, such as finishing and retention. These steels demonstrate appropriate mechanical properties, such as high ultimate tensile strength and good corrosion resistance. A new class of materials, the austenic-ferritic stainless steels, is substituting for austenitic stainless steels in several industrial applications where these properties are necessary. This work supports the hypothesis that orthodontic wires of austenic-ferritic stainless steels can replace austenitic stainless steels. The advantages are cost reduction and decrease of the nickel hypersensitivity effect in patients undergoing orthodontic treatments. The object of this study was to evaluate wires of austenitic-ferritic stainless steel SEW 410 Nr. 14517 (Cr26Ni6Mo3Cu3) produced by cold working through rolling and drawing processes. Tests were performed to evaluate the ultimate tensile strength, hardness, ductility, and formability. In accordance with technical standards the wires exhibited ultimate tensile strength and ductility suitable for orthodontic clinical applications. These austenitie-ferritic wires can be an alternative to substitute the common commercial wires of austenic stainless steels with the advantage of decreasing the nickel content

    TCam-2 seminoma cell line exhibits characteristic foetal germ cell responses to TGF-beta ligands and retinoic acid

    No full text
    Germ cell testicular cancer is understood to arise during embryogenesis, based on the persistence of embryonic germ cell markers in carcinoma in situ and seminoma. In this study, we examine the potential of the seminoma-derived TCam-2 cell line to be used as representative in functional analyses of seminoma. We demonstrate expression of several early germ cell markers, including BLIMP1, OCT3/4, AP2 gamma, NANOG and KIT. Many TGF-beta superfamily receptors and downstream transcription factors are also present in these cells including the normally foetal ACTRIIA receptor, indicating potential responsiveness to TGF-beta superfamily ligands. Treatment with BMP4 or RA induces a significant increase in ACTRIA, ACTRIIA and ACTRIIB transcripts, whereas activin A decreases ACTRIB. BMP4 and RA each support TCam-2 survival and/or proliferation. In addition, despite increased KIT mRNA levels induced by BMP4, RA and activin A, activin A does not improve survival or proliferation. The capacity for BMP4 and retinoic acid to enhance foetal germ cell survival and proliferation/self-renewal has been demonstrated in mice, but not previously tested in humans. This study is the first to demonstrate a functional response in seminoma cells, using a well-characterized cell line, consistent with their foetal germ cell-like identity

    Thrombin stimulation of proteoglycan synthesis in vascular smooth muscle is mediated by PAR-1 transactivation of the transforming growth factor-beta type I receptor.

    No full text
    Growth factors modify the structure of the glycosaminoglycan (GAG) chains on biglycan leading to enhanced LDL binding. G-protein receptor-coupled agonists such as thrombin, signal changes the structure of proteoglycans produced by vascular smooth muscle cells (VSMCs). One component of classical G-protein-coupled receptor (GPCR) signaling invokes transactivation of protein tyrosine kinase receptors such as the epidermal growth factor receptor. Serine/threonine receptor growth factors such as transforming growth factor-(TGF)-ß are potent activators of proteoglycan synthesis. We have used the model of proteoglycan synthesis to demonstrate that the signaling paradigm of GPCR signaling can be extended to include the transactivation of serine/threonine receptor, specifically the TGF-ß type I receptor (TßRI) also known as activin-like kinase (ALK) V. Thrombin stimulated elongation of GAG chains and increased proteoglycan core protein expression and these responses were blocked by the TßRI antagonist, SB431542 and TßRI siRNA knockdown, as well as several protease-activated receptor (PAR)-1 antagonists. The canonical downstream response to TGF-ßis increased C-terminal phosphorylation of the transcription factor Smad2 generating phospho-Smad2C (phosphorylation of Smad2 C-terminal region). Thrombin stimulated increased phospho-Smad2C levels, and the response was blocked by SB431542 and JNJ5177094. The proteolytically inactive thrombin mimetic thrombin-receptor activating peptide also stimulated an increase in cytosolic phospho-Smad2C. Signaling pathways for growth factor regulated proteoglycan synthesis represent therapeutic targets for the prevention of atherosclerosis, but the novel finding of a GPCR-mediated transactivation of a serine/threonine growth factor receptor almost certainly has implications well beyond the synthesis of proteoglycan
    corecore