1,131 research outputs found

    Branching mechanism of intergranular crack propagation in three dimensions

    Full text link
    We investigate the process of slow intergranular crack propagation by the finite element method model, and show that branching is induced by partial arresting of crack front owing to the geometrical randomness of grain boundaries. A possible scenario for branching instability of crack propagation in disordered continuum medium is also discussed.Comment: 4 pages, submitted to Phys.Rev.E; v2:corrected typos v3: final version to be publishe

    Color Glass Condensate and BFKL dynamics in deep inelastic scattering at small x

    Full text link
    The proton structure function F_2(x,Q^2) for x < 0.01 and 0.045< Q^2 < 45 GeV^2, measured in the deep inelastic scattering at HERA, can be well described within the framework of the Color Glass Condensate.Comment: 4 pages, 1 figure, incl. IOP style files. Talk given at the 17th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions (Quark Matter 2004), Oakland, CA USA, 11-17 Jan 200

    Two Langevin equations in the Doi-Peliti formalism

    Full text link
    A system-size expansion method is incorporated into the Doi-Peliti formalism for stochastic chemical kinetics. The basic idea of the incorporation is to introduce a new decomposition of unity associated with a so-called Cole-Hopf transformation. This approach elucidates a relationship between two different Langevin equations; one is associated with a coherent-state path-integral expression and the other describes density fluctuations. A simple reaction scheme X⇄X+XX \rightleftarrows X+X is investigated as an illustrative example.Comment: 14page

    Role of heating and current-induced forces in the stability of atomic wires

    Full text link
    We investigate the role of local heating and forces on ions in the stability of current-carrying aluminum wires. We find that heating increases with wire length due to a red shift of the frequency spectrum. Nevertheless, the local temperature of the wire is relatively low for a wide range of biases provided good thermal contact exists between the wire and the bulk electrodes. On the contrary, current-induced forces increase substantially as a function of bias and reach bond-breaking values at about 1 V. These results suggest that local heating promotes low-bias instabilities if dissipation into the bulk electrodes is not efficient, while current-induced forces are mainly responsible for the wire break-up at large biases. We compare these results to experimental observations.Comment: 4 pages, 4 figure

    Dynamical Chiral Symmetry Breaking on the Light Front I. DLCQ Approach

    Get PDF
    Dynamical chiral symmetry breaking in the DLCQ method is investigated in detail using a chiral Yukawa model closely related to the Nambu-Jona-Lasinio model. By classically solving three constraints characteristic of the light-front formalism, we show that the chiral transformation defined on the light front is equivalent to the usual one when bare mass is absent. A quantum analysis demonstrates that a nonperturbative mean-field solution to the ``zero-mode constraint'' for a scalar boson (sigma) can develop a nonzero condensate while a perturbative solution cannot. This description is due to our identification of the ``zero-mode constraint'' with the gap equation. The mean-field calculation clarifies unusual chiral transformation properties of fermionic field, which resolves a seemingly inconsistency between triviality of the null-plane chiral charge Q_5|0>=0 and nonzero condensate. We also calculate masses of scalar and pseudoscalar bosons for both symmetric and broken phases, and eventually derive the PCAC relation and nonconservation of Q_5 in the broken phase.Comment: Revised version to appear in Phys. Rev. D. 19 pages, 4 figures, REVTEX. Derivation of the PCAC relation is given. Its relation to the nonconservation of chiral charge is clarified. 1 figure and some references adde

    Proteins to Order Use of Synthetic DNA to Generate Site-Specific Mutations

    Get PDF
    The ability to cause specific changes in the amino acid sequences of proteins would greatly advance studies on the influence of protein structure on biochemical function. If the desired changes can once be made in the nucleic acid which encodes the protein, one can use cloning in an appropriate microorganism to produce essentially limitless quantities of the mutant protein. We describe here the application of oligonucleotide-directed site-specific mutagenesis to accomplish this objective for the enzyme B-lactamase, the gene for which is contained in the plasmid pBR322. The method uses a procedure to screen for mutant clones which depends on the DNA in the various colonies and not on the properties of the mutant protein; the method can, therefore, be widely applied and does not require, in each separate case, the development of a screening procedure which depends on some phenotypic difference between mutant and wild-type protein

    Water management in a tank cascade irrigation system in Sri Lanka: First seasonal report of TARC-IIMI Joint Project 1991/1992 Maha Season

    Get PDF
    Water management / Tank irrigation / Small scale systems / Irrigation management / Crop-based irrigation / Water balance / Water conveyance / Sri Lanka / Thirappane

    Chemical Equilibration and Transport Properties of Hadronic Matter near TcT_c

    Full text link
    We discuss how the inclusion of Hagedorn states near TcT_c leads to short chemical equilibration times of proton anti-proton pairs, KKˉK\bar{K} pairs, and ΛΛˉ\Lambda\bar{\Lambda} pairs, which indicates that hadrons do not need to be "born" into chemical equilibrium in ultrarelativistic heavy ion collisions. We show that the hadron ratios computed within our model match the experimental results at RHIC very well. Furthermore, estimates for η/s\eta/s near TcT_c computed within our resonance gas model are comparable to the string theory viscosity bound η/s=1/4π\eta/s=1/4\pi. Our model provides a good description of the recent lattice results for the trace anomaly close to Tc=196T_c=196 MeV.Comment: 4 pages, 3 figures, to appear in the conference proceedings for Quark Matter 2009, March 30 - April 4, Knoxville, Tennesse

    Dephasing of coupled spin qubit system during gate operations due to background charge fluctuations

    Full text link
    It has been proposed that a quantum computer can be constructed based on electron spins in quantum dots or based on a superconducting nanocircuit. During two-qubit operations, the fluctuation of the coupling parameters is a critical factor. One source of such fluctuation is the stirring of the background charges. We focused on the influence of this fluctuation on a coupled spin qubit system. The induced fluctuation in exchange coupling changes the amount of entanglement, fidelity, and purity. In our previous study, the background charge fluctuations were found to be an important channel of dephasing for a single Josephson qubit.Comment: 10 pages, 7 figure. to be publishe

    Stability of Metal Nanowires at Ultrahigh Current Densities

    Full text link
    We develop a generalized grand canonical potential for the ballistic nonequilibrium electron distribution in a metal nanowire with a finite applied bias voltage. Coulomb interactions are treated in the self-consistent Hartree approximation, in order to ensure gauge invariance. Using this formalism, we investigate the stability and cohesive properties of metallic nanocylinders at ultrahigh current densities. A linear stability analysis shows that metal nanowires with certain {\em magic conductance values} can support current densities up to 10^11 A/cm^2, which would vaporize a macroscopic piece of metal. This finding is consistent with experimental studies of gold nanowires. Interestingly, our analysis also reveals the existence of reentrant stability zones--geometries that are stable only under an applied bias.Comment: 12 pages, 6 figures, version published in PR
    • …
    corecore