746 research outputs found
Optically pumped magnetometry in arbitrarily oriented magnetic fields
Optically pumped atomic magnetometers (OPMs) offer highly sensitive magnetic measurements using compact hardware, offering new possibilities for practical precision sensors. Double-resonance OPM operation is well suited to unshielded magnetometry, due to high sensor dynamic range. However, sensor response is highly anisotropic with variation in the orientation of the magnetic field. We present data quantifying these effects and discuss implications for the design of practical sensors
Recommended from our members
Ensemble prediction for nowcasting with a convection-permitting model - II: forecast error statistics
A 24-member ensemble of 1-h high-resolution forecasts over the Southern United Kingdom is used to study short-range forecast error statistics. The initial conditions are found from perturbations from an ensemble transform Kalman filter. Forecasts from this system are assumed to lie within the bounds of forecast error of an operational forecast system. Although noisy, this system is capable of producing physically reasonable statistics which are analysed and compared to statistics implied from a variational assimilation system. The variances for temperature errors for instance show structures that reflect convective activity. Some variables, notably potential temperature and specific humidity perturbations, have autocorrelation functions that deviate from 3-D isotropy at the convective-scale (horizontal scales less than 10 km). Other variables, notably the velocity potential for horizontal divergence perturbations, maintain 3-D isotropy at all scales. Geostrophic and hydrostatic balances are studied by examining correlations between terms in the divergence and vertical momentum equations respectively. Both balances are found to decay as the horizontal scale decreases. It is estimated that geostrophic balance becomes less important at scales smaller than 75 km, and hydrostatic balance becomes less important at scales smaller than 35 km, although more work is required to validate these findings. The implications of these results for high-resolution data assimilation are discussed
Status of the CRESST Dark Matter Search
The CRESST experiment aims for a detection of dark matter in the form of
WIMPs. These particles are expected to scatter elastically off the nuclei of a
target material, thereby depositing energy on the recoiling nucleus. CRESST
uses scintillating CaWO4 crystals as such a target. The energy deposited by an
interacting particle is primarily converted to phonons which are detected by
transition edge sensors. In addition, a small fraction of the interaction
energy is emitted from the crystals in the form of scintillation light which is
measured in coincidence with the phonon signal by a separate cryogenic light
detector for each target crystal. The ratio of light to phonon energy permits
the discrimination between the nuclear recoils expected from WIMPs and events
from radioactive backgrounds which primarily lead to electron recoils. CRESST
has shown the success of this method in a commissioning run in 2007 and, since
then, further investigated possibilities for an even better suppression of
backgrounds. Here, we report on a new class of background events observed in
the course of this work. The consequences of this observation are discussed and
we present the current status of the experiment.Comment: Proceedings of the 13th International Workshop on Low Temperature
Detectors, 4 pages, 3 figure
Ethnographic perspectives on global mental health
The field of Global Mental Health (GMH) aims to influence mental health policy and practice worldwide, with a focus on human rights and access to care. There have been important achievements, but GMH has also been the focus of scholarly controversies arising from political, cultural and pragmatic critiques. These debates have become increasingly polarized, giving rise to a need for more dialogue and experience-near research to inform theorizing. Ethnography has much to offer in this respect. This paper frames and introduces five articles in the issue of Transcultural Psychiatry that illustrate the role of ethnographic methods in understanding the effects and implications of the field of global mental health on mental health policy and practice. The papers include ethnographies from South Africa, India and Tonga, that show the potential for ethnographic evidence to inform GMH projects. These studies provide nuanced conceptualizations of GMH’s varied manifestations across different settings, the diverse ways that GMH’s achievements can be evaluated, and the connections that can be drawn between locally observed experiences and wider historical, political and social phenomena. Ethnography can provide a basis for constructive dialogue between those engaged in developing and implementing GMH interventions and those critical of some of its approaches
The Far-Ultraviolet "Continuum" in Protoplanetary Disk Systems II: CO Fourth Positive Emission and Absorption
We exploit the high sensitivity and moderate spectral resolution of the
-Cosmic Origins Spectrograph to detect far-ultraviolet spectral features
of carbon monoxide (CO) present in the inner regions of protoplanetary disks
for the first time. We present spectra of the classical T Tauri stars HN Tau,
RECX-11, and V4046 Sgr, representative of a range of CO radiative processes. HN
Tau shows CO bands in absorption against the accretion continuum. We measure a
CO column density and rotational excitation temperature of N(CO) = 2 +/- 1
10 cm and T_rot(CO) 500 +/- 200 K for the absorbing gas.
We also detect CO A-X band emission in RECX-11 and V4046 Sgr, excited by
ultraviolet line photons, predominantly HI LyA. All three objects show emission
from CO bands at 1560 \AA, which may be excited by a combination
of UV photons and collisions with non-thermal electrons. In previous
observations these emission processes were not accounted for due to blending
with emission from the accretion shock, collisionally excited H, and
photo-excited H2; all of which appeared as a "continuum" whose components could
not be separated. The CO emission spectrum is strongly dependent upon the shape
of the incident stellar LyA emission profile. We find CO parameters in the
range: N(CO) 10 cm, T_{rot}(CO) > 300 K for the LyA-pumped
emission. We combine these results with recent work on photo- and
collisionally-excited H emission, concluding that the observations of
ultraviolet-emitting CO and H2 are consistent with a common spatial origin. We
suggest that the CO/H2 ratio in the inner disk is ~1, a transition between the
much lower interstellar value and the higher value observed in solar system
comets today, a result that will require future observational and theoretical
study to confirm.Comment: 12 pages, 7 figures, 3 tables. ApJ - accepte
Recommended from our members
Mediterranean Sea response to climate change in an ensemble of twenty first century scenarios
The Mediterranean climate is expected to become warmer and drier during the twenty-first century. Mediterranean Sea response to climate change could be modulated by the choice of the socio-economic scenario as well as the choice of the boundary conditions mainly the Atlantic hydrography, the river runoff and the atmospheric fluxes. To assess and quantify the sensitivity of the Mediterranean Sea to the twenty-first century climate change, a set of numerical experiments was carried out with the regional ocean model NEMOMED8 set up for the Mediterranean Sea. The model is forced by air–sea fluxes derived from the regional climate model ARPEGE-Climate at a 50-km horizontal resolution. Historical simulations representing the climate of the period 1961–2000 were run to obtain a reference state. From this baseline, various sensitivity experiments were performed for the period 2001–2099, following different socio-economic scenarios based on the Special Report on Emissions Scenarios. For the A2 scenario, the main three boundary forcings (river runoff, near-Atlantic water hydrography and air–sea fluxes) were changed one by one to better identify the role of each forcing in the way the ocean responds to climate change. In two additional simulations (A1B, B1), the scenario is changed, allowing to quantify the socio-economic uncertainty. Our 6-member scenario simulations display a warming and saltening of the Mediterranean. For the 2070–2099 period compared to 1961–1990, the sea surface temperature anomalies range from +1.73 to +2.97 °C and the SSS anomalies spread from +0.48 to +0.89. In most of the cases, we found that the future Mediterranean thermohaline circulation (MTHC) tends to reach a situation similar to the eastern Mediterranean Transient. However, this response is varying depending on the chosen boundary conditions and socio-economic scenarios. Our numerical experiments suggest that the choice of the near-Atlantic surface water evolution, which is very uncertain in General Circulation Models, has the largest impact on the evolution of the Mediterranean water masses, followed by the choice of the socio-economic scenario. The choice of river runoff and atmospheric forcing both have a smaller impact. The state of the MTHC during the historical period is found to have a large influence on the transfer of surface anomalies toward depth. Besides, subsurface currents are substantially modified in the Ionian Sea and the Balearic region. Finally, the response of thermosteric sea level ranges from +34 to +49 cm (2070–2099 vs. 1961–1990), mainly depending on the Atlantic forcing
Characterizing CO Fourth Positive Emission in Young Circumstellar Disks
Carbon Monoxide is a commonly used IR/sub-mm tracer of gas in protoplanetary
disks. We present an analysis of ultraviolet CO emission in {HST}-COS spectra
for 12 Classical T Tauri stars. Several ro-vibrational bands of the CO A^1\Pi -
X^1\Sigma^+ (Fourth Positive) electronic transition system are spectrally
resolved from emission of other atoms and H_2. The CO A^1\Pi v'=14 state is
populated by absorption of Ly\alpha photons, created at the accretion column on
the stellar surface. For targets with strong CO emission, we model the Ly\alpha
radiation field as an input for a simple fluorescence model to estimate CO
rotational excitation temperatures and column densities. Typical column
densities range from N_{CO} = 10^{18} - 10^{19} cm^{-2}. Our measured
excitation temperatures are mostly below T_{CO} = 600 K, cooler than typical
M-band CO emission. These temperatures and the emission line widths imply that
the UV emission originates in a different population of CO than that which is
IR-emitting. We also find a significant correlation between CO emission and the
disk accretion rate M_{acc} and age. Our analysis shows that ultraviolet CO
emission can be a useful diagnostic of CTTS disk gas
- …
