746 research outputs found

    Optically pumped magnetometry in arbitrarily oriented magnetic fields

    Get PDF
    Optically pumped atomic magnetometers (OPMs) offer highly sensitive magnetic measurements using compact hardware, offering new possibilities for practical precision sensors. Double-resonance OPM operation is well suited to unshielded magnetometry, due to high sensor dynamic range. However, sensor response is highly anisotropic with variation in the orientation of the magnetic field. We present data quantifying these effects and discuss implications for the design of practical sensors

    Status of the CRESST Dark Matter Search

    Full text link
    The CRESST experiment aims for a detection of dark matter in the form of WIMPs. These particles are expected to scatter elastically off the nuclei of a target material, thereby depositing energy on the recoiling nucleus. CRESST uses scintillating CaWO4 crystals as such a target. The energy deposited by an interacting particle is primarily converted to phonons which are detected by transition edge sensors. In addition, a small fraction of the interaction energy is emitted from the crystals in the form of scintillation light which is measured in coincidence with the phonon signal by a separate cryogenic light detector for each target crystal. The ratio of light to phonon energy permits the discrimination between the nuclear recoils expected from WIMPs and events from radioactive backgrounds which primarily lead to electron recoils. CRESST has shown the success of this method in a commissioning run in 2007 and, since then, further investigated possibilities for an even better suppression of backgrounds. Here, we report on a new class of background events observed in the course of this work. The consequences of this observation are discussed and we present the current status of the experiment.Comment: Proceedings of the 13th International Workshop on Low Temperature Detectors, 4 pages, 3 figure

    Ethnographic perspectives on global mental health

    Get PDF
    The field of Global Mental Health (GMH) aims to influence mental health policy and practice worldwide, with a focus on human rights and access to care. There have been important achievements, but GMH has also been the focus of scholarly controversies arising from political, cultural and pragmatic critiques. These debates have become increasingly polarized, giving rise to a need for more dialogue and experience-near research to inform theorizing. Ethnography has much to offer in this respect. This paper frames and introduces five articles in the issue of Transcultural Psychiatry that illustrate the role of ethnographic methods in understanding the effects and implications of the field of global mental health on mental health policy and practice. The papers include ethnographies from South Africa, India and Tonga, that show the potential for ethnographic evidence to inform GMH projects. These studies provide nuanced conceptualizations of GMH’s varied manifestations across different settings, the diverse ways that GMH’s achievements can be evaluated, and the connections that can be drawn between locally observed experiences and wider historical, political and social phenomena. Ethnography can provide a basis for constructive dialogue between those engaged in developing and implementing GMH interventions and those critical of some of its approaches

    The Far-Ultraviolet "Continuum" in Protoplanetary Disk Systems II: CO Fourth Positive Emission and Absorption

    Get PDF
    We exploit the high sensitivity and moderate spectral resolution of the HSTHST-Cosmic Origins Spectrograph to detect far-ultraviolet spectral features of carbon monoxide (CO) present in the inner regions of protoplanetary disks for the first time. We present spectra of the classical T Tauri stars HN Tau, RECX-11, and V4046 Sgr, representative of a range of CO radiative processes. HN Tau shows CO bands in absorption against the accretion continuum. We measure a CO column density and rotational excitation temperature of N(CO) = 2 +/- 1 ×\times 1017^{17} cm2^{-2} and T_rot(CO) 500 +/- 200 K for the absorbing gas. We also detect CO A-X band emission in RECX-11 and V4046 Sgr, excited by ultraviolet line photons, predominantly HI LyA. All three objects show emission from CO bands at λ\lambda >> 1560 \AA, which may be excited by a combination of UV photons and collisions with non-thermal electrons. In previous observations these emission processes were not accounted for due to blending with emission from the accretion shock, collisionally excited H2_{2}, and photo-excited H2; all of which appeared as a "continuum" whose components could not be separated. The CO emission spectrum is strongly dependent upon the shape of the incident stellar LyA emission profile. We find CO parameters in the range: N(CO) 101819^{18-19} cm2^{-2}, T_{rot}(CO) > 300 K for the LyA-pumped emission. We combine these results with recent work on photo- and collisionally-excited H2_{2} emission, concluding that the observations of ultraviolet-emitting CO and H2 are consistent with a common spatial origin. We suggest that the CO/H2 ratio in the inner disk is ~1, a transition between the much lower interstellar value and the higher value observed in solar system comets today, a result that will require future observational and theoretical study to confirm.Comment: 12 pages, 7 figures, 3 tables. ApJ - accepte

    Characterizing CO Fourth Positive Emission in Young Circumstellar Disks

    Full text link
    Carbon Monoxide is a commonly used IR/sub-mm tracer of gas in protoplanetary disks. We present an analysis of ultraviolet CO emission in {HST}-COS spectra for 12 Classical T Tauri stars. Several ro-vibrational bands of the CO A^1\Pi - X^1\Sigma^+ (Fourth Positive) electronic transition system are spectrally resolved from emission of other atoms and H_2. The CO A^1\Pi v'=14 state is populated by absorption of Ly\alpha photons, created at the accretion column on the stellar surface. For targets with strong CO emission, we model the Ly\alpha radiation field as an input for a simple fluorescence model to estimate CO rotational excitation temperatures and column densities. Typical column densities range from N_{CO} = 10^{18} - 10^{19} cm^{-2}. Our measured excitation temperatures are mostly below T_{CO} = 600 K, cooler than typical M-band CO emission. These temperatures and the emission line widths imply that the UV emission originates in a different population of CO than that which is IR-emitting. We also find a significant correlation between CO emission and the disk accretion rate M_{acc} and age. Our analysis shows that ultraviolet CO emission can be a useful diagnostic of CTTS disk gas
    corecore