38 research outputs found

    Heat capacity of the quantum magnet TiOCl

    Full text link
    Measurements of the heat capacity C(T,H) of the one-dimensional quantum magnet TiOCl are presented for temperatures 2K < T < 300K and magnetic fields up to 5T. Distinct anomalies at 91K and 67K signal two subsequent phase transitions. The lower of these transitions clearly is of first order and seems to be related to the spin degrees of freedom. The transition at 92K probably involves the lattice and/or orbital moments. A detailed analysis of the data reveals that the entropy change through both transitions is surprisingly small (~ 0.1R), pointing to the existence strong fluctuations well into the non-ordered high-temperature phase. No significant magnetic field dependence was detected.Comment: 4 pages, 2 figure

    Pressure-induced insulator-to-metal transition in low-dimensional TiOCl

    Full text link
    We studied the transmittance and reflectance of the low-dimensional Mott-Hubbard insulator TiOCl in the infrared and visible frequency range as a function of pressure. The strong suppression of the transmittance and the abrupt increase of the near-infrared reflectance above 12 GPa suggest a pressure-induced insulator-to-metal transition. The pressure-dependent frequency shifts of the orbital excitations, as well as the pressure dependences of the charge gap and the spectral weight of the optical conductivity above the phase transition are presented.Comment: 4 pages, 6 figure

    Are the renormalized band widths in TTF-TCNQ of structural or electronic origin? - An angular dependent NEXAFS study

    Get PDF
    We have performed angle-dependent near-edge x-ray absorption fine structure measurements in the Auger electron yield mode on the correlated quasi-one-dimensional organic conductor TTF-TCNQ in order to determine the orientation of the molecules in the topmost surface layer. We find that the tilt angles of the molecules with respect to the one-dimensional axis are essentially the same as in the bulk. Thus we can rule out surface relaxation as the origin of the renormalized band widths which were inferred from the analysis of photoemission data within the one-dimensional Hubbard model. Thereby recent theoretical results are corroborated which invoke long-range Coulomb repulsion as alternative explanation to understand the spectral dispersions of TTF-TCNQ quantitatively within an extended Hubbard model.Comment: 6 pages, 5 figure

    Spin gap formation in the quantum spin systems TiOX, X=Cl and Br

    Full text link
    In the layered quantum spin systems TiOCl and TiOBr the magnetic susceptibility shows a very weak temperature dependence at high temperatures and transition-induced phenomena at low temperatures. There is a clear connection of the observed transition temperatures to the distortion of the octahedra and the layer separation. Band structure calculations point to a relation of the local coordinations and the dimensionality of the magnetic properties. While from magnetic Raman scattering only a small decrease of the magnetic exchange by -5-10% is derived comparing TiOCl with TiOBr, the temperature dependence of the magnetic susceptibility favors a much bigger change.Comment: 5 figures, 15 pages, further information see http://www.peter-lemmens.d

    Cluster Dynamical Mean-field calculations for TiOCl

    Full text link
    Based on a combination of cluster dynamical mean field theory (DMFT) and density functional calculations, we calculated the angle-integrated spectral density in the layered s=1/2s=1/2 quantum magnet TiOCl. The agreement with recent photoemission and oxygen K-edge X-ray absorption spectroscopy experiments is found to be good. Th e improvement achieved with this calculation with respect to previous single-site DMFT calculations is an indication of the correlated nature and low-dimensionality of TiOCl.Comment: 9 pages, 3 figures, improved version as publishe

    Optical study of orbital excitations in transition-metal oxides

    Get PDF
    The orbital excitations of a series of transition-metal compounds are studied by means of optical spectroscopy. Our aim was to identify signatures of collective orbital excitations by comparison with experimental and theoretical results for predominantly local crystal-field excitations. To this end, we have studied TiOCl, RTiO3 (R=La, Sm, Y), LaMnO3, Y2BaNiO5, CaCu2O3, and K4Cu4OCl10, ranging from early to late transition-metal ions, from t_2g to e_g systems, and including systems in which the exchange coupling is predominantly three-dimensional, one-dimensional or zero-dimensional. With the exception of LaMnO3, we find orbital excitations in all compounds. We discuss the competition between orbital fluctuations (for dominant exchange coupling) and crystal-field splitting (for dominant coupling to the lattice). Comparison of our experimental results with configuration-interaction cluster calculations in general yield good agreement, demonstrating that the coupling to the lattice is important for a quantitative description of the orbital excitations in these compounds. However, detailed theoretical predictions for the contribution of collective orbital modes to the optical conductivity (e.g., the line shape or the polarization dependence) are required to decide on a possible contribution of orbital fluctuations at low energies, in particular in case of the orbital excitations at about 0.25 eV in RTiO3. Further calculations are called for which take into account the exchange interactions between the orbitals and the coupling to the lattice on an equal footing.Comment: published version, discussion of TiOCl extended to low T, improved calculation of orbital excitation energies in TiOCl, figure 16 improved, references updated, 33 pages, 20 figure

    Preimplant factors affecting postimplant CT-determined prostate volume and the CT/TRUS volume ratio after transperineal interstitial prostate brachytherapy with 125I free seeds

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim was to identify preimplant factors affecting postimplant prostate volume and the increase in prostate volume after transperineal interstitial prostate brachytherapy with <sup>125</sup>I free seeds.</p> <p>Methods</p> <p>We reviewed the records of 180 patients who underwent prostate brachytherapy with <sup>125</sup>I free seeds for clinical T1/T2 prostate cancer. Eighty-one (45%) of the 180 patients underwent neoadjuvant hormonal therapy. No patient received supplemental external beam radiotherapy. Postimplant computed tomography was undertaken, and postimplant dosimetric analysis was performed. Univariate and multivariate analyses were performed to identify preimplant factors affecting postimplant prostate volume by computed tomography and the increase in prostate volume after implantation.</p> <p>Results</p> <p>Preimplant prostate volume by transrectal ultrasound, serum prostate-specific antigen, number of needles, and number of seeds implanted were significantly correlated with postimplant prostate volume by computed tomography. The increase in prostate volume after implantation was significantly higher in patients with neoadjuvant hormonal therapy than in those without. Preimplant prostate volume by transrectal ultrasound, number of needles, and number of seeds implanted were significantly correlated with the increase in prostate volume after implantation. Stepwise multiple linear regression analysis showed that preimplant prostate volume by transrectal ultrasound and neoadjuvant hormonal therapy were significant independent factors affecting both postimplant prostate volume by computed tomography and the increase in prostate volume after implantation.</p> <p>Conclusions</p> <p>The results of the present study show that preimplant prostate volume by transrectal ultrasound and neoadjuvant hormonal therapy are significant preimplant factors affecting both postimplant prostate volume by computed tomography and the increase in prostate volume after implantation.</p

    Selbstdiffusion von Erdalkali-Ionen in synthetischem Zeolith

    No full text
    corecore