114 research outputs found
Splitting of Long-Wavelength Modes of the Fractional Quantum Hall Liquid at
Resonant inelastic light scattering experiments at reveal a novel
splitting of the long wavelength modes in the low energy spectrum of
quasiparticle excitations in the charge degree of freedom. We find a single
peak at small wavevectors that splits into two distinct modes at larger
wavevectors. The evidence of well-defined dispersive behavior at small
wavevectors indicates a coherence of the quantum fluid in the micron length
scale. We evaluate interpretations of long wavelength modes of the electron
liquid.Comment: 4 pages, 4 figure
Transition from Free to Interacting Composite Fermions away from =1/3
Spin excitations from a partially populated composite fermion level are
studied above and below . In the range the experiments
uncover significant departures from the non-interacting composite fermion
picture that demonstrate the increasing impact of interactions as quasiparticle
Landau levels are filled. The observed onset of a transition from free to
interacting composite fermions could be linked to condensation into the higher
order states suggested by transport experiments and numerical evaluations
performed in the same filling factor range.Comment: 4 pages, 5 figures, to appear in PR
Spin-Atomic Vibration Interaction and Spin-Flip Hamiltonian of a Single Atomic Spin in a Crystal Field
We derive the spin-atomic vibration interaction and the
spin-flip Hamiltonian of a single atomic spin in a crystal field.
We here apply the perturbation theory to a model with the spin-orbit
interaction and the kinetic and potential energies of electrons. The model also
takes into account the difference in vibration displacement between an
effective nucleus and electrons, \Delta {{\boldmath r}}. Examining the
coefficients of and , we first show that
appears for \Delta {{\boldmath r}}0, while is present
independently of \Delta {{\boldmath r}}. As an application, we next obtain
and of an Fe ion in a crystal field of tetragonal
symmetry. It is found that the magnitudes of the coefficients of
can be larger than those of the conventional spin-phonon interaction depending
on vibration frequency. In addition, transition probabilities per unit time due
to and are investigated for the Fe ion with an
anisotropy energy of , where is an anisotropy constant and
is the component of a spin operator.Comment: 55 pages, 17 figures, to be published in J. Phys. Soc. Jpn. 79 (2010)
No. 11, typos correcte
The role of magnetic anisotropy in the Kondo effect
In the Kondo effect, a localized magnetic moment is screened by forming a
correlated electron system with the surrounding conduction electrons of a
non-magnetic host. Spin S=1/2 Kondo systems have been investigated extensively
in theory and experiments, but magnetic atoms often have a larger spin. Larger
spins are subject to the influence of magnetocrystalline anisotropy, which
describes the dependence of the magnetic moment's energy on the orientation of
the spin relative to its surrounding atomic environment. Here we demonstrate
the decisive role of magnetic anisotropy in the physics of Kondo screening. A
scanning tunnelling microscope is used to simultaneously determine the
magnitude of the spin, the magnetic anisotropy and the Kondo properties of
individual magnetic atoms on a surface. We find that a Kondo resonance emerges
for large-spin atoms only when the magnetic anisotropy creates degenerate
ground-state levels that are connected by the spin flip of a screening
electron. The magnetic anisotropy also determines how the Kondo resonance
evolves in a magnetic field: the resonance peak splits at rates that are
strongly direction dependent. These rates are well described by the energies of
the underlying unscreened spin states.Comment: 14 pages, 4 figures, published in Nature Physic
Higher-Energy Composite Fermion Levels in the Fractional Quantum Hall Effect
Even though composite fermions in the fractional quantum Hall liquid are well established, it is not yet known up to what energies they remain intact. We probe the high-energy spectrum of the 1/3 liquid directly by resonant inelastic light scattering, and report the observation of a large number of new collective modes. Supported by our theoretical calculations, we associate these with transitions across two or more composite fermions levels. The formation of quasiparticle levels up to high energies is direct evidence for the robustness of topological order in the fractional quantum Hall effect
Magnetic Anisotropy of Single Mn Acceptors in GaAs in an External Magnetic Field
We investigate the effect of an external magnetic field on the physical
properties of the acceptor hole states associated with single Mn acceptors
placed near the (110) surface of GaAs. Crosssectional scanning tunneling
microscopy images of the acceptor local density of states (LDOS) show that the
strongly anisotropic hole wavefunction is not significantly affected by a
magnetic field up to 6 T. These experimental results are supported by
theoretical calculations based on a tightbinding model of Mn acceptors in GaAs.
For Mn acceptors on the (110) surface and the subsurfaces immediately
underneath, we find that an applied magnetic field modifies significantly the
magnetic anisotropy landscape. However the acceptor hole wavefunction is
strongly localized around the Mn and the LDOS is quite independent of the
direction of the Mn magnetic moment. On the other hand, for Mn acceptors placed
on deeper layers below the surface, the acceptor hole wavefunction is more
delocalized and the corresponding LDOS is much more sensitive on the direction
of the Mn magnetic moment. However the magnetic anisotropy energy for these
magnetic impurities is large (up to 15 meV), and a magnetic field of 10 T can
hardly change the landscape and rotate the direction of the Mn magnetic moment
away from its easy axis. We predict that substantially larger magnetic fields
are required to observe a significant field-dependence of the tunneling current
for impurities located several layers below the GaAs surface.Comment: Non
Anomalous structure in the single particle spectrum of the fractional quantum Hall effect
The two-dimensional electron system (2DES) is a unique laboratory for the
physics of interacting particles. Application of a large magnetic field
produces massively degenerate quantum levels known as Landau levels. Within a
Landau level the kinetic energy of the electrons is suppressed, and
electron-electron interactions set the only energy scale. Coulomb interactions
break the degeneracy of the Landau levels and can cause the electrons to order
into complex ground states. In the high energy single particle spectrum of this
system, we observe salient and unexpected structure that extends across a wide
range of Landau level filling fractions. The structure appears only when the
2DES is cooled to very low temperature, indicating that it arises from delicate
ground state correlations. We characterize this structure by its evolution with
changing electron density and applied magnetic field. We present two possible
models for understanding these observations. Some of the energies of the
features agree qualitatively with what might be expected for composite
Fermions, which have proven effective for interpreting other experiments in
this regime. At the same time, a simple model with electrons localized on
ordered lattice sites also generates structure similar to those observed in the
experiment. Neither of these models alone is sufficient to explain the
observations across the entire range of densities measured. The discovery of
this unexpected prominent structure in the single particle spectrum of an
otherwise thoroughly studied system suggests that there exist core features of
the 2DES that have yet to be understood.Comment: 15 pages, 10 figure
Quantum manipulation via atomic-scale magnetoelectric effects
Magnetoelectric effects at the atomic scale are demonstrated to afford unique
functionality. This is shown explicitly for a quantum corral defined by a wall
of magnetic atoms deposited on a metal surface where spin-orbit coupling is
observable. We show these magnetoelectric effects allow one to control the
properties of systems placed inside the corral as well as their electronic
signatures; they provide alternative tools for probing electronic properties at
the atomic scale
- …