111 research outputs found

    Composite materials research and education program: The NASA-Virginia Tech composites program

    Get PDF
    Major areas of study include: (1) edge effects in finite width laminated composites subjected to mechanical, thermal and hygroscopic loading with temperature dependent material properties and the influence of edge effects on the initiation of failure; (2) shear and compression testing of composite materials at room and elevated temperatures; (3) optical techniques for precise measurement of coefficients of thermal expansion of composites; (4) models for the nonlinear behavior of composites including material nonlinearity and damage accumulation and verification of the models under biaxial loading; (5) compressive failure of graphite/epoxy plates with circular holes and the buckling of composite cylinders under combined compression and torsion; (6) nonlinear mechanical properties of borsic/aluminum, graphite/polyimide and boron/aluminum; (7) the strength characteristics of spliced sandwich panels; and (8) curved graphite/epoxy panels subjected to internal pressure

    Composite laminates with negative through-the-thickness Poisson's ratios

    Get PDF
    A simple analysis using two dimensional lamination theory combined with the appropriate three dimensional anisotropic constitutive equation is presented to show some rather surprising results for the range of values of the through-the-thickness effective Poisson's ratio nu sub xz for angle ply laminates. Results for graphite-epoxy show that the through-the-thickness effective Poisson's ratio can range from a high of 0.49 for a 90 laminate to a low of -0.21 for a + or - 25s laminate. It is shown that negative values of nu sub xz are also possible for other laminates

    Nonlinear temperature dependent failure analysis of finite width composite laminates

    Get PDF
    A quasi-three dimensional, nonlinear elastic finite element stress analysis of finite width composite laminates including curing stresses is presented. Cross-ply, angle-ply, and two quasi-isotropic graphite/epoxy laminates are studied. Curing stresses are calculated using temperature dependent elastic properties that are input as percent retention curves, and stresses due to mechanical loading in the form of an axial strain are calculated using tangent modulii obtained by Ramberg-Osgood parameters. It is shown that curing stresses and stresses due to tensile loading are significant as edge effects in all types of laminate studies. The tensor polynomial failure criterion is used to predict the initiation of failure. The mode of failure is predicted by examining individual stress contributions to the tensor polynomial

    Optimum design of composite laminates with thermal effects

    Get PDF
    An analytical approach to determine an optimum laminate for a variety of thermal and mechanical loading combinations is presented. The analysis is performed for a linear elastic material under static mechanical and uniform thermal loadings. The problem is restricted to a unit width and length laminate with angle orientations resulting in an orthotropic, symmetric, and balanced configuration. An objective function defining total strain energy, is formulated and an optimum laminate design determined subject to constraints on stiffness, average coefficient of thermal expansion, and strength. The objective function is formulated in terms of the orientation angles, number of plies, and material properties. The method presented has, in varying degrees, shown that the design of a laminate can be accomplished using strain energy minimization as the primary criteria. The results of various combinations of applied constraints in the optimized design process are presented and discussed

    Tensile and compressive test results for metal matrix composites

    Get PDF
    Experimental results of the mechanical behavior of two metal matrix composite systems at room temperature are presented. Ultimate stress, ultimate strain, Poisson's ratio, and initial Young's Modulus are documented for BORSIC/Aluminum in uniaxial tension and Boron/Aluminum in uniaxial tension and compression. Poisson's ratio is used for nonlinear stress-strain behavior. A comparison of compression results for B/Al as obtained from sandwich beam compression specimens and IITRI coupon compression specimens is presented

    On Poisson's ratio for metal matrix composite laminates

    Get PDF
    The definition of Poisson's ratio for nonlinear behavior of metal matrix composite laminates is discussed and experimental results for tensile and compressive loading of five different boron-aluminum laminates are presented. It is shown that there may be considerable difference in the value of Poisson's ratio as defined by a total strain or an incremental strain definition. It is argued that the incremental definition is more appropriate for nonlinear material behavior. Results from a (0) laminate indicate that the incremental definition provides a precursor to failure which is not evident if the total strain definition is used

    Finite element models for predicting crack growth characteristics in composite materials

    Get PDF
    Two dimensional and quasi-three dimensional, linear elastic finite element models for the prediction of crack growth characteristics, including crack growth direction, in laminated composite materials are presented. Mixed mode crack growth in isotropic materials, unidirectional and laminated composites is considered. The modified crack closure method is used to predict the applied load level for crack extension and two failure theories, modifications of the point stress and the Hashin failure criteria, are proposed to predict the direction of crack extension in composites. Comparisons are made with the Tsai-Wu failure criterion and the Sih strain energy density criterion as well as with experimental results. It is shown that the modified versions of point stress and Hashin criteria compare well with experiment

    An endochronic theory for transversely isotropic fibrous composites

    Get PDF
    A rational methodology of modelling both nonlinear and elastic dissipative response of transversely isotropic fibrous composites is developed and illustrated with the aid of the observed response of graphite-polyimide off-axis coupons. The methodology is based on the internal variable formalism employed within the text of classical irreversible thermodynamics and entails extension of Valanis' endochronic theory to transversely isotropic media. Applicability of the theory to prediction of various response characteristics of fibrous composites is illustrated by accurately modelling such often observed phenomena as: stiffening reversible behavior along fiber direction; dissipative response in shear and transverse tension characterized by power-laws with different hardening exponents; permanent strain accumulation; nonlinear unloading and reloading; and stress-interaction effects

    Interlaminar stresses in composite laminates: A perturbation analysis

    Get PDF
    A general method of solution for an elastic balanced symmetric composite laminate subject to a uniaxial extension was developed based upon a perturbation analysis of a limiting free body containing an interfacial plane. The solution satisfies more physical requirements and boundary conditions than previous investigations, and predicts smooth continuous interlaminar stresses with no instabilities. It determines the finite maximum intensity for the interlaminar normal stress in all laminates, provides mathematical evidences for the singular stresses in angle-ply laminates, suggests the need for the experimental determination of an important problem parameter, and introduces a viable means for solving related problems of practical interest

    A limiting analysis for edge effects in angle-ply laminates

    Get PDF
    A zeroth order solution for edge effects in angle ply composite laminates using perturbation techniques and a limiting free body approach was developed. The general method of solution for laminates is developed and then applied to the special case of a graphite/epoxy laminate. Interlaminar stress distributions are obtained as a function of the laminate thickness to width ratio h/b and compared to existing numerical results. The solution predicts stable, continuous stress distributions, determines finite maximum tensile interlaminar normal stress for two laminates, and provides mathematical evidence for singular interlaminar shear stresses
    corecore