174 research outputs found

    California Architects Board

    Get PDF

    Injection locking of a low cost high power laser diode at 461 nm

    Get PDF
    Stable laser sources at 461 nm are important for optical cooling of strontium atoms. In most existing experiments this wavelength is obtained by frequency doubling infrared lasers, since blue laser diodes either have low power or large emission bandwidths. Here, we show that injecting less than 10 mW of monomode laser radiation into a blue multimode 500 mW high power laser diode is capable of slaving at least 50% of the power to the desired frequency. We verify the emission bandwidth reduction by saturation spectroscopy on a strontium gas cell and by direct beating of the slave with the master laser. We also demonstrate that the laser can efficiently be used within the Zeeman slower for optical cooling of a strontium atomic beam.Comment: 2nd corrected version (minor revisions); Manuscript accepted for publication in Review of Scientific Instruments; 5 pages, 6 figure

    Deceleration of a supersonic beam of SrF molecules to 120 m/s

    Get PDF
    We report on the deceleration of a beam of SrF molecules from 290 to 120~m/s. Following supersonic expansion, the molecules in the X2ÎŁX^2\Sigma (v=0v=0, N=1N=1) low-field seeking states are trapped by the moving potential wells of a traveling-wave Stark decelerator. With a deceleration strength of 9.6 km/s2^2 we have demonstrated the removal of 85 % of the initial kinetic energy in a 4 meter long modular decelerator. The absolute amount of kinetic energy removed is a factor 1.5 higher compared to previous Stark deceleration experiments. The demonstrated decelerator provides a novel tool for the creation of highly collimated and slow beams of heavy diatomic molecules, which serve as a good starting point for high-precision tests of fundamental physics

    A Single Laser System for Ground-State Cooling of 25-Mg+

    Full text link
    We present a single solid-state laser system to cool, coherently manipulate and detect 25^{25}Mg+^+ ions. Coherent manipulation is accomplished by coupling two hyperfine ground state levels using a pair of far-detuned Raman laser beams. Resonant light for Doppler cooling and detection is derived from the same laser source by means of an electro-optic modulator, generating a sideband which is resonant with the atomic transition. We demonstrate ground-state cooling of one of the vibrational modes of the ion in the trap using resolved-sideband cooling. The cooling performance is studied and discussed by observing the temporal evolution of Raman-stimulated sideband transitions. The setup is a major simplification over existing state-of-the-art systems, typically involving up to three separate laser sources

    A Novel, Robust Quantum Detection Scheme

    Get PDF
    Protocols used in quantum information and precision spectroscopy rely on efficient internal quantum state discrimination. With a single ion in a linear Paul trap, we implement a novel detection method which utilizes correlations between two detection events with an intermediate spin-flip. The technique is experimentally characterized as more robust against fluctuations in detection laser power compared to conventionally implemented methods. Furthermore, systematic detection errors which limit the Rabi oscillation contrast in conventional methods are overcome

    Mechanomyography versus Electromyography, in monitoring the muscular fatigue

    Get PDF
    BACKGROUND: The use of the mechanomyogram (MMG) which detects muscular vibrations generated by fused individual fiber twitches has been refined. The study addresses a comparison of the MMG and surface electromyogram (SEMG) in monitoring muscle fatigue. METHODS: The SEMG and MMG were recorded simultaneously from the same territory of motor units in two muscles (Biceps, Brachioradialis) of the human (n = 18), during sustained contraction at 25 % MVC (maximal voluntary contraction). RESULTS: The RMS (root mean square) of the SEMG and MMG increased with advancing fatigue; MF (median frequency) of the PSD (power density spectra) progressively decreased from the onset of the contraction. These findings (both muscles, all subjects), demonstrate both through the SEMG and MMG a central component of the fatigue. The MF regression slopes of MMG were closer to each other between men and women (Biceps 1.55%; Brachialis 13.2%) than were the SEMG MF slopes (Biceps 25.32%; Brachialis 17.72%), which shows a smaller inter-sex variability for the MMG vs. SEMG. CONCLUSION: The study presents another quantitative comparison (MF, RMS) of MMG and SEMG, showing that MMG signal can be used for indication of the degree of muscle activation and for monitoring the muscle fatigue when the application of SEMG is not feasible (chronical implants, adverse environments contaminated by electrical noise)

    Anticipating and Adapting to the Future Impacts of Climate Change on the Health, Security and Welfare of Low Elevation Coastal Zone (LECZ) Communities in Southeastern USA

    Get PDF
    Low elevation coastal zones (LECZ) are extensive throughout the southeastern United States. LECZ communities are threatened by inundation from sea level rise, storm surge, wetland degradation, land subsidence, and hydrological flooding. Communication among scientists, stakeholders, policy makers and minority and poor residents must improve. We must predict processes spanning the ecological, physical, social, and health sciences. Communities need to address linkages of (1) human and socioeconomic vulnerabilities; (2) public health and safety; (3) economic concerns; (4) land loss; (5) wetland threats; and (6) coastal inundation. Essential capabilities must include a network to assemble and distribute data and model code to assess risk and its causes, support adaptive management, and improve the resiliency of communities. Better communication of information and understanding among residents and officials is essential. Here we review recent background literature on these matters and offer recommendations for integrating natural and social sciences. We advocate for a cyber-network of scientists, modelers, engineers, educators, and stakeholders from academia, federal state and local agencies, non-governmental organizations, residents, and the private sector. Our vision is to enhance future resilience of LECZ communities by offering approaches to mitigate hazards to human health, safety and welfare and reduce impacts to coastal residents and industries
    • …
    corecore