397 research outputs found

    Exciting a d-density wave in an optical lattice with driven tunneling

    Get PDF
    Quantum phases with unusual symmetries may play a key role for the understanding of solid state systems at low temperatures. We propose a realistic scenario, well in reach of present experimental techniques, which should permit to produce a stationary quantum state with dx2−y2d_{x^2-y^2}-symmetry in a two-dimensional bosonic optical square lattice. This state, characterized by alternating rotational flux in each plaquette, arises from driven tunneling implemented by a stimulated Raman scattering process. We discuss bosons in a square lattice, however, more complex systems involving other lattice geometries appear possible.Comment: 4 pages, 3 figure

    Artificial Staggered Magnetic Field for Ultracold Atoms in Optical Lattices

    Full text link
    A time-dependent optical lattice with staggered particle current in the tight-binding regime was considered that can be described by a time-independent effective lattice model with an artificial staggered magnetic field. The low energy description of a single-component fermion in this lattice at half-filling is provided by two copies of ideal two-dimensional massless Dirac fermions. The Dirac cones are generally anisotropic and can be tuned by the external staggered flux \p. For bosons, the staggered flux modifies the single-particle spectrum such that in the weak coupling limit, depending on the flux \p, distinct superfluid phases are realized. Their properties are discussed, the nature of the phase transitions between them is establised, and Bogoliubov theory is used to determine their excitation spectra. Then the generalized superfluid-Mott-insulator transition is studied in the presence of the staggered flux and the complete phase diagram is established. Finally, the momentum distribution of the distinct superfluid phases is obtained, which provides a clear experimental signature of each phase in ballistic expansion experiments.Comment: 14 pages, 5 figure

    Competing Superconducting States for Ultracold Atoms in Optical Lattices with Artificial Staggered Magnetic Field

    Full text link
    We study superconductivity in an ultracold Bose-Fermi mixture loaded into a square optical lattice subjected to a staggered flux. While the bosons form a superfluid at very low temperature and weak interaction, the interacting fermions experience an additional long-ranged attractive interaction mediated by phonons in the bosonic superfluid. This leads us to consider a generalized Hubbard model with on-site and nearest-neighbor attractive interactions, which give rise to two competing superconducting channels. We use the Bardeen-Cooper-Schrieffer theory to determine the regimes where distinct superconducting ground states are stabilized, and find that the non-local pairing channel favors a superconducting ground state which breaks both the gauge and the lattice symmetries, thus realizing unconventional superconductivity. Furthermore, the particular structure of the single-particle spectrum leads to unexpected consequences, for example, a dome-shaped superconducting region in the temperature versus filing fraction phase diagram, with a normal phase that comprises much richer physics than a Fermi-liquid. Notably, the relevant temperature regime and coupling strength is readily accessible in state of the art experiments with ultracold trapped atoms

    Interaction-induced chiral p_x \pm i p_y superfluid order of bosons in an optical lattice

    Full text link
    The study of superconductivity with unconventional order is complicated in condensed matter systems by their extensive complexity. Optical lattices with their exceptional precision and control allow one to emulate superfluidity avoiding many of the complications of condensed matter. A promising approach to realize unconventional superfluid order is to employ orbital degrees of freedom in higher Bloch bands. In recent work, indications were found that bosons condensed in the second band of an optical chequerboard lattice might exhibit p_x \pm i p_y order. Here we present experiments, which provide strong evidence for the emergence of p_x \pm i p_y order driven by the interaction in the local p-orbitals. We compare our observations with a multi-band Hubbard model and find excellent quantitative agreement

    Continuous loading of 1^{1}S0_{0} calcium atoms into an optical dipole trap

    Full text link
    We demonstrate an efficient scheme for continuous trap loading based upon spatially selective optical pumping. We discuss the case of 1^{1}S0_{0} calcium atoms in an optical dipole trap (ODT), however, similar strategies should be applicable to a wide range of atomic species. Our starting point is a reservoir of moderately cold (≈300μ\approx 300 \muK) metastable 3^{3}P2_{2}-atoms prepared by means of a magneto-optic trap (triplet-MOT). A focused 532 nm laser beam produces a strongly elongated optical potential for 1^{1}S0_{0}-atoms with up to 350 μ\muK well depth. A weak focused laser beam at 430 nm, carefully superimposed upon the ODT beam, selectively pumps the 3^{3}P2_{2}-atoms inside the capture volume to the singlet state, where they are confined by the ODT. The triplet-MOT perpetually refills the capture volume with 3^{3}P2_{2}-atoms thus providing a continuous stream of cold atoms into the ODT at a rate of 10710^7 s−1^{-1}. Limited by evaporation loss, in 200 ms we typically load 5×1055 \times 10^5 atoms with an initial radial temperature of 85 μ\muK. After terminating the loading we observe evaporation during 50 ms leaving us with 10510^5 atoms at radial temperatures close to 40 μ\muK and a peak phase space density of 6.8×10−56.8 \times 10^{-5}. We point out that a comparable scheme could be employed to load a dipole trap with 3^{3}P0_{0}-atoms.Comment: 4 pages, 4 figure

    Collective Sideband Cooling in an Optical Ring Cavity

    Get PDF
    We propose a cavity based laser cooling and trapping scheme, providing tight confinement and cooling to very low temperatures, without degradation at high particle densities. A bidirectionally pumped ring cavity builds up a resonantly enhanced optical standing wave which acts to confine polarizable particles in deep potential wells. The particle localization yields a coupling of the degenerate travelling wave modes via coherent photon redistribution. This induces a splitting of the cavity resonances with a high frequency component, that is tuned to the anti-Stokes Raman sideband of the particles oscillating in the potential wells, yielding cooling due to excess anti-Stokes scattering. Tight confinement in the optical lattice together with the prediction, that more than 50% of the trapped particles can be cooled into the motional ground state, promise high phase space densities.Comment: 4 pages, 1 figur

    Orbital superfluidity in the PP-band of a bipartite optical square lattice

    Full text link
    The successful emulation of the Hubbard model in optical lattices has stimulated world wide efforts to extend their scope to also capture more complex, incompletely understood scenarios of many-body physics. Unfortunately, for bosons, Feynmans fundamental "no-node" theorem under very general circumstances predicts a positive definite ground state wave function with limited relevance for many-body systems of interest. A promising way around Feynmans statement is to consider higher bands in optical lattices with more than one dimension, where the orbital degree of freedom with its intrinsic anisotropy due to multiple orbital orientations gives rise to a structural diversity, highly relevant, for example, in the area of strongly correlated electronic matter. In homogeneous two-dimensional optical lattices, lifetimes of excited bands on the order of a hundred milliseconds are possible but the tunneling dynamics appears not to support cross-dimensional coherence. Here we report the first observation of a superfluid in the PP-band of a bipartite optical square lattice with SS-orbits and PP-orbits arranged in a chequerboard pattern. This permits us to establish full cross-dimensional coherence with a life-time of several ten milliseconds. Depending on a small adjustable anisotropy of the lattice, we can realize real-valued striped superfluid order parameters with different orientations Px±PyP_x \pm P_y or a complex-valued Px±iPyP_x \pm i P_y order parameter, which breaks time reversal symmetry and resembles the π\pi-flux model proposed in the context of high temperature superconductors. Our experiment opens up the realms of orbital superfluids to investigations with optical lattice models.Comment: 5 pages, 5 figure

    Strongly Interacting Two-Dimensional Dirac Fermions

    Full text link
    We show how strongly interacting two-dimensional Dirac fermions can be realized with ultracold atoms in a two-dimensional optical square lattice with an experimentally realistic, inherent gauge field, which breaks time-reversal and inversion symmetries. We find remarkable phenomena in a temperature range around a tenth of the Fermi-temperature, accessible with present experimental techniques: at zero chemical potential, besides a conventional s-wave superconducting phase, unconventional superconductivity with non-local bond pairing arises. In a temperature versus doping phase diagram, the unconventional superconducting phase exhibits a dome structure, reminiscent of the phase diagram for high-temperature superconductors and heavy fermions.Comment: 4 pages, 3 figure
    • …
    corecore