101 research outputs found

    Pinning and depinning of a classic quasi-one-dimensional Wigner crystal in the presence of a constriction

    Full text link
    We studied the dynamics of a quasi-one-dimensional chain-like system of charged particles at low temperature, interacting through a screened Coulomb potential in the presence of a local constriction. The response of the system when an external electric field is applied was investigated. We performed Langevin molecular dynamics simulations for different values of the driving force and for different temperatures. We found that the friction together with the constriction pins the particles up to a critical value of the driving force. The system can depin \emph{elastically} or \emph{quasi-elastically} depending on the strength of the constriction. The elastic (quasi-elastic) depinning is characterized by a critical exponent β∼0.66\beta\sim0.66 (β∼0.95\beta\sim0.95). The dc conductivity is zero in the pinned regime, it has non-ohmic characteristics after the activation of the motion and then it is constant. Furthermore, the dependence of the conductivity with temperature and strength of the constriction was investigated in detail. We found interesting differences between the single and the multi-chain regimes as the temperature is increased.Comment: 18 pages, 16 figures, accepted for publication in PR

    Non linear flux flow in TiN superconducting thin film

    Full text link
    We have studied the superconducting behavior of 100 nm Titanium Nitride (TiN) thin film in a perpendicular magnetic field. We found a zero field transition temperature of 4.6 K and a slope in the H-T plane of -0.745 T/K. At 4.2 K, we have performed careful transport measurements by measuring both the differential resistivity and voltage as a function of a DC current. Our results are analyzed in the framework of linear and non linear flux flow behavior. In particular, we have observed an electronic instability at high vortex velocities and from its dependence with respect to the applied magnetic field, we can exctract the inelastic scattering time and diffusion length of the quasiparticles

    Dynamical Phase Transition in a Driven Disordered Vortex Lattice

    Full text link
    Using Langevin dynamics, we have investigated the dynamics of vortices in a disordered two dimensional superconductor subjected to a uniform driving current. The results provide direct numerical evidence for a dynamical phase transition between a plastic flow regime and a moving ``hexatic glass." The simulated current-voltage characteristics are in excellent agreement with recent transport measurements on amorphous Mo77Ge23{\rm Mo_{77}Ge_{23}} thin film superconductors.Comment: 13 pages, latex, revtex, 4 figures available upon request from [email protected]

    Plastic energies in layered superconductors

    Full text link
    We estimate the energy cost associated with two pancake vortices colliding in a layered superconductor. It is argued that this energy sets the plastics energy scale and is the analogue of the crossing energy for vortices in the continuum case. The starting point of the calculation is the Lawrence-Doniach version of the Ginzburg-Landau free energy for type-II superconductors. The magnetic fields considered are along the c-direction and assumed to be sufficiently high that the lowest Landau level approximation is valid. For Bi-2212, where it is know that layering is very important, the results are radically different from what would have been obtained using a three-dimensional anisotropic continuum model. We then use the plastic energy for Bi-2212 to successfully explain recent results from Hellerqvist {\em et al.}\ on its longitudinal resistance.Comment: 5 Pages Revtex, 4 uuencoded postscript figure

    Critical depinning force and vortex lattice order in disordered superconductors

    Full text link
    We simulate the ordering of vortices and its effects on the critical current in superconductors with varied vortex-vortex interaction strength and varied pinning strengths for a two-dimensional system. For strong pinning the vortex lattice is always disordered and the critical depinning force only weakly increases with decreasing vortex-vortex interactions. For weak pinning the vortex lattice is defect free until the vortex-vortex interactions have been reduced to a low value, when defects begin to appear with a simultaneous rapid increase in the critical depinning force. In each case the depinning force shows a maximum for non-interacting vortices. The relative height of the peak increases and the peak width decreases for decreasing pinning strength in excellent agreement with experimental trends associated with the peak effect. We show that scaling relations exist between the distance between defects in the vortex lattice and the critical depinning force.Comment: 5 pages, 6 figure

    Transverse depinning in strongly driven vortex lattices with disorder

    Full text link
    Using numerical simulations we investigate the transverse depinning of moving vortex lattices interacting with random disorder. We observe a finite transverse depinning barrier for vortex lattices that are driven with high longitudinal drives, when the vortex lattice is defect free and moving in correlated 1D channels. The transverse barrier is reduced as the longitudinal drive is decreased and defects appear in the vortex lattice, and the barrier disappears in the plastic flow regime. At the transverse depinning transition, the vortex lattice moves in a staircase pattern with a clear transverse narrow-band voltage noise signature.Comment: 4 pages, 4 figure

    Field-driven topological glass transition in a model flux line lattice

    Full text link
    We show that the flux line lattice in a model layered HTSC becomes unstable above a critical magnetic field with respect to a plastic deformation via penetration of pairs of point-like disclination defects. The instability is characterized by the competition between the elastic and the pinning energies and is essentially assisted by softening of the lattice induced by a dimensional crossover of the fluctuations as field increases. We confirm through a computer simulation that this indeed may lead to a phase transition from crystalline order at low fields to a topologically disordered phase at higher fields. We propose that this mechanism provides a model of the low temperature field--driven disordering transition observed in neutron diffraction experiments on Bi2Sr2CaCu2O8 {\rm Bi_2Sr_2CaCu_2O_8\, } single crystals.Comment: 11 pages, 4 figures available upon request via snail mail from [email protected]

    Gliding dislocations in a driven vortex lattice

    Full text link
    The dynamics of dislocations in a two-dimensional vortex lattice is studied in the presence of a pinning potential and a transport current. In a vortex lattice drifting with velocity vv a glide velocity VdV_d of the dislocation with respect to the vortex lattice is found to decay like Vd∼v−4V_d \sim v^{-4} for large drive. From this result the velocity for the crossover between a regime of coherent elastic motion and a regime of incoherent plastic motion of vortices is estimated.Comment: 4 pages Revte

    Hall noise and transverse freezing in driven vortex lattices

    Full text link
    We study driven vortices lattices in superconducting thin films. Above the critical force FcF_c we find two dynamical phase transitions at FpF_p and FtF_t, which could be observed in simultaneous noise measurements of the longitudinal and the Hall voltage. At FpF_p there is a transition from plastic flow to smectic flow where the voltage noise is isotropic (Hall noise = longitudinal noise) and there is a peak in the differential resistance. At FtF_t there is a sharp transition to a frozen transverse solid where the Hall noise falls down abruptly and vortex motion is localized in the transverse direction.Comment: 4 pages, 3 figure

    Equilibration and Dynamic Phase Transitions of a Driven Vortex Lattice

    Full text link
    We report on the observation of two types of current driven transitions in metastable vortex lattices. The metastable states, which are missed in usual slow transport measurements, are detected with a fast transport technique in the vortex lattice of undoped 2H-NbSe2_2. The transitions are seen by following the evolution of these states when driven by a current. At low currents we observe an equilibration transition from a metastable to a stable state, followed by a dynamic crystallization transition at high currents.Comment: 5 pages, 4 figure
    • …
    corecore