We studied the dynamics of a quasi-one-dimensional chain-like system of
charged particles at low temperature, interacting through a screened Coulomb
potential in the presence of a local constriction. The response of the system
when an external electric field is applied was investigated. We performed
Langevin molecular dynamics simulations for different values of the driving
force and for different temperatures. We found that the friction together with
the constriction pins the particles up to a critical value of the driving
force. The system can depin \emph{elastically} or \emph{quasi-elastically}
depending on the strength of the constriction. The elastic (quasi-elastic)
depinning is characterized by a critical exponent β∼0.66
(β∼0.95). The dc conductivity is zero in the pinned regime, it has
non-ohmic characteristics after the activation of the motion and then it is
constant. Furthermore, the dependence of the conductivity with temperature and
strength of the constriction was investigated in detail. We found interesting
differences between the single and the multi-chain regimes as the temperature
is increased.Comment: 18 pages, 16 figures, accepted for publication in PR