185 research outputs found
Thermal Control of Spin Excitations in the Coupled Ising-Chain Material RbCoCl<sub>3</sub>
We have used neutron spectroscopy to investigate the spin dynamics of the quantum (S = 1/2) antiferromagnetic Ising chains in RbCoCl3. The structure and magnetic interactions in this material conspire to produce two magnetic phase transitions at low temperatures, presenting an ideal opportunity for thermal control of the chain environment. The high-resolution spectra we measure of two-domain-wall excitations therefore characterize precisely both the continuum response of isolated chains and the "Zeeman-ladder" bound states of chains in three different effective staggered fields in one and the same material. We apply an extended Matsubara formalism to obtain a quantitative description of the entire dataset, Monte Carlo simulations to interpret the magnetic order, and finite-temperature density-matrix renormalization-group calculations to fit the spectral features of all three phases
Molecular Tweezers with Varying Anions: A Comparative Study
Selective binding of the phosphate-substituted molecular tweezer 1a to protein lysine residues was suggested to explain the inhibition of certain enzymes and the aberrant aggregation of amyloid petide AÎČ42 or α-synuclein, which are assumed to be responsible for Alzheimerâs and Parkinsonâs disease, respectively. In this work we systematically investigated the binding of four water-soluble tweezers 1aâd (substituted by phosphate, methanephosphonate, sulfate, or O-methylenecarboxylate groups) to amino acids and peptides containing lysine or arginine residues by using fluorescence spectroscopy, NMR spectroscopy, and isothermal titration calorimetry (ITC). The comparison of the experimental results with theoretical data obtained by a combination of QM/MM and ab initio 1H NMR shift calculations provides clear evidence that the tweezers 1aâc bind the amino acid or peptide guest molecules by threading the lysine or arginine side chain through the tweezersâ cavity, whereas in the case of 1d the guest molecule is preferentially positioned outside the tweezerâs cavity. Attractive ionic, CH-Ï, and hydrophobic interactions are here the major binding forces. The combination of experiment and theory provides deep insight into the hostâguest binding modes, a prerequisite to understanding the exciting influence of these tweezers on the aggregation of proteins and the activity of enzymes
The structure of black hole magnetospheres. I. Schwarzschild black holes
We introduce a multipolar scheme for describing the structure of stationary,
axisymmetric, force-free black-hole magnetospheres in the ``3+1'' formalism. We
focus here on Schwarzschild spacetime, giving a complete classification of the
separable solutions of the stream equation. We show a transparent term-by-term
analogy of our solutions with the familiar multipoles of flat-space
electrodynamics. We discuss electrodynamic processes around disk-fed black
holes in which our solutions find natural applications: (a) ``interior''
solutions in studies of the Blandford-Znajek process of extracting the hole's
rotational energy, and of the formation of relativistic jets in active galactic
nuclei and ``microquasars'', and, (b) ``exterior'' solutions in studies of
accretion disk dynamos, disk-driven winds and jets. On the strength of existing
numerical studies, we argue that the poloidal field structures found here are
also expected to hold with good accuracy for rotating black holes, except for
maximum possible rotation rates. We show that the closed-loop exterior
solutions found here are not in contradiction with the Macdonald-Thorne
theorem, since these solutions, which diverge logarithmically on the hole's
horizon , apply only to those regions which exclude .Comment: 6 figures. Accepted for publication by MNRA
The fidelity of synaptonemal complex assembly is regulated by a signaling mechanism that controls early meiotic progression
© 2014 Elsevier Inc.Proper chromosome segregation during meiosis requires the assembly of the synaptonemal complex (SC) between homologous chromosomes. However, the SC structure itself is indifferent to homology, andpoorly understood mechanisms that depend on conserved HORMA-domain proteins prevent ectopic SC assembly. Although HORMA-domain proteins are thought to regulate SC assembly as intrinsic components of meiotic chromosomes, here we uncover a key role for nuclear soluble HORMA-domain protein HTP-1 in the quality control of SC assembly. We show that a mutant form of HTP-1 impaired in chromosome loading provides functionality of an HTP-1-dependent checkpoint that delays exit from homology search-competent stages until all homolog pairs are linked by the SC. Bypassing of this regulatory mechanism results in premature meiotic progression and licensing of homology-independent SC assembly. These findings identify nuclear soluble HTP-1 as a regulator of early meiotic progression, suggesting parallels with the mode of action of Mad2 in the spindle assembly checkpoint
Coulomb field of an accelerated charge: physical and mathematical aspects
The Maxwell field equations relative to a uniformly accelerated frame, and
the variational principle from which they are obtained, are formulated in terms
of the technique of geometrical gauge invariant potentials. They refer to the
transverse magnetic (TM) and the transeverse electric (TE) modes. This gauge
invariant "2+2" decomposition is used to see how the Coulomb field of a charge,
static in an accelerated frame, has properties that suggest features of
electromagnetism which are different from those in an inertial frame. In
particular, (1) an illustrative calculation shows that the Larmor radiation
reaction equals the electrostatic attraction between the accelerated charge and
the charge induced on the surface whose history is the event horizon, and (2) a
spectral decomposition of the Coulomb potential in the accelerated frame
suggests the possibility that the distortive effects of this charge on the
Rindler vacuum are akin to those of a charge on a crystal lattice.Comment: 27 pages, PlainTex. Related papers available at
http://www.math.ohio-state.edu/~gerlac
Electrostatic boundary value problems in the Schwarzschild background
The electrostatic potential of any test charge distribution in Schwarzschild
space with boundary values is derived. We calculate the Green's function,
generalize the second Green's identity for p-forms and find the general
solution. Boundary value problems are solved. With a multipole expansion the
asymptotic property for the field of any charge distribution is derived. It is
shown that one produces a Reissner--Nordstrom black hole if one lowers a test
charge distribution slowly toward the horizon. The symmetry of the distribution
is not important. All the multipole moments fade away except the monopole. A
calculation of the gravitationally induced electrostatic self-force on a
pointlike test charge distribution held stationary outside the black hole is
presented.Comment: 18 pages, no figures, uses iopart.st
Scalar field and electromagnetic perturbations on Locally Rotationally Symmetric spacetimes
We study scalar field and electromagnetic perturbations on Locally
Rotationally Symmetric (LRS) class II spacetimes, exploiting a recently
developed covariant and gauge-invariant perturbation formalism. From the
Klein-Gordon equation and Maxwell's equations, respectively, we derive
covariant and gauge-invariant wave equations for the perturbation variables and
thereby find the generalised Regge-Wheeler equations for these LRS class II
spacetime perturbations. As illustrative examples, the results are discussed in
detail for the Schwarzschild and Vaidya spacetime, and briefly for some classes
of dust Universes.Comment: 22 pages; v3 has minor changes to match published versio
The self-force on a static scalar test-charge outside a Schwarzschild black hole
The finite part of the self-force on a static scalar test-charge outside a
Schwarzschild black hole is zero. By direct construction of Hadamard's
elementary solution, we obtain a closed-form expression for the minimally
coupled scalar field produced by a test-charge held fixed in Schwarzschild
spacetime. Using the closed-form expression, we compute the necessary external
force required to hold the charge stationary. Although the energy associated
with the scalar field contributes to the renormalized mass of the particle (and
thereby its weight), we find there is no additional self-force acting on the
charge. This result is unlike the analogous electrostatic result, where, after
a similar mass renormalization, there remains a finite repulsive self-force
acting on a static electric test-charge outside a Schwarzschild black hole. We
confirm our force calculation using Carter's mass-variation theorem for black
holes. The primary motivation for this calculation is to develop techniques and
formalism for computing all forces - dissipative and non-dissipative - acting
on charges and masses moving in a black-hole spacetime. In the Appendix we
recap the derivation of the closed-form electrostatic potential. We also show
how the closed-form expressions for the fields are related to the infinite
series solutions.Comment: RevTeX, To Appear in Phys. Rev.
An Action for Black Hole Membranes
The membrane paradigm is the remarkable view that, to an external observer, a
black hole appears to behave exactly like a dynamical fluid membrane, obeying
such pre-relativistic equations as Ohm's law and the Navier-Stokes equation. It
has traditionally been derived by manipulating the equations of motion. Here we
provide an action formulation of this picture, clarifying what underlies the
paradigm, and simplifying the derivations. Within this framework, we derive
previous membrane results, and extend them to dyonic black hole solutions. We
discuss how it is that an action can produce dissipative equations. Using a
Euclidean path integral, we show that familiar semi-classical thermodynamic
properties of black holes also emerge from the membrane action. Finally, in a
Hamiltonian description, we establish the validity of a minimum entropy
production principle for black holes.Comment: LaTeX, 30 Pages, minor editorial change
- âŠ