6,375 research outputs found

    Atomistic pseudopotential calculations of the optical properties of InAs/InP self-assembled quantum dots

    Full text link
    We present a comprehensive study of the optical properties of InAs/InP self-assembled quantum dots (QDs) using an empirical pseudopotential method and configuration interaction treatment of the many-particle effects. The results are compared to those of InAs/GaAs QDs. The main results are: (i) The alignment of emission lines of neutral exciton, charged exciton and biexciton in InAs/InP QDs is quite different from that in InAs/GaAs QDs. (ii) The hidden correlation in InAs/InP QDs is 0.7 - 0.9 meV, smaller than that in InAs/GaAs QDs. (iii) The radiative lifetimes of neutral exciton, charged exciton and biexciton in InAs/InP QDs are about twice longer than those in InAs/GaAs QDs. (v) The phase diagrams of few electrons and holes in InAs/InP QDs differ greatly from those in InAs/GaAs QDs. The filling orders of electrons and holes are shown to obey the Hund's rule and Aufbau principle, and therefore the photoluminescence spectra of highly charged excitons are very different from those of InAs/GaAs QDs.Comment: 10 pages, 11 figure

    Identifying the Riemann zeros by periodically driving a single qubit

    Get PDF
    The Riemann hypothesis, one of the most important open problems in pure mathematics, implies the most profound secret of prime numbers. One of the most interesting approaches to solve this hypothesis is to connect the problem with the spectrum of the physical Hamiltonian of a quantum system. However, none of the proposed quantum Hamiltonians have been experimentally feasible.Here, we report the first experiment to identify the first non-trivial zeros of the Riemann zeta function and the first two zeros of P\'olya's fake zeta function, using a novel Floquet method, through properly designed periodically driving functions. According to this method, the zeros of these functions are characterized by the occurrence of crossings of quasi-energies when the dynamics of the system are frozen. The experimentally obtained zeros are in excellent agreement with their exact values. Our study provides the first experimental realization of the Riemann zeros, which may provide new insights into this fundamental mathematical problem.Comment: 5 pages, 7 figure

    Relativistic Heavy-Ion Collisions

    Get PDF

    Composite metamaterials with dual-band magnetic resonances in the terahertz frequency regime

    Full text link
    Composite metamaterials(CMMs) combining a subwavelength metallic hole array (i.e. one-layer fishnet structure) and an array of split-ring resonators(SRRs) on the same board are fabricated with gold films on silicon wafer. Transmission measurements of the CMMs in the terahertz range have been performed. Dual-band magnetic resonances, namely, a LC resonance at 4.40 THz and an additional magnetic resonance at 8.64 THz originating from the antiparallel current in wire pairs in the CMMs are observed when the electrical field polarization of the incident light is parallel to the gap of the component SRR. The numerical simulations agree well with the experimental results and further clarify the nature of the dual-band magnetic resonances.Comment: 4 figures, 14 page

    Experimental Studies of Low-field Landau Quantization in Two-dimensional Electron Systems in GaAs/AlGaAs Heterostructures

    Full text link
    By applying a magnetic field perpendicular to GaAs/AlGaAs two-dimensional electron systems, we study the low-field Landau quantization when the thermal damping is reduced with decreasing the temperature. Magneto-oscillations following Shubnikov-de Haas (SdH) formula are observed even when their amplitudes are so large that the deviation to such a formula is expected. Our experimental results show the importance of the positive magneto-resistance to the extension of SdH formula under the damping induced by the disorder.Comment: 9 pages, 3 figure

    Effects of Predispersal Insect Seed Predation on the Early Life History Stages of a Rare Cold Sand-Desert Legume

    Get PDF
    Seed predation by insects is common in seeds of Fabaceae (legume) species with physical dormancy (PY). However, the consequences of insect seed predation on the life history of legumes with PY have been little studied. In the largest genus of seed plants, Astragalus (Fabaceae), only one study has tested the effects of insect predation on germination, and none has tested it directly on seedling survival. Thus, we tested the effects of insect predation on seed germination and seedling growth and survival of Astragalus lehmannianus, a central Asian sand-desert endemic. Under laboratory conditions, seeds lightly predated in the natural habitat of this perennial legume germinated to a much higher percentage than intact seeds, and seedlings from predated and nonpredated seeds survived and grew about equally well. Further, in contrast to our prediction seedlings from predated seeds that germinated “out-of-season” under near-natural conditions in NW China survived over winter. The implication of our results is that individual plants from predated seeds that germinate early (in our case autumn) potentially have a fitness advantage over those from nonpredated seeds, which delay germination until spring of a subsequent year

    Synthesis of SnO 2

    Get PDF
    Zinc oxides deposited on Tin dioxide nanowires have been successfully synthesized by atomic layer deposition (ALD). The diameter of SnO2-ZnO core-shell nanowires is 100 nm by ALD 200 cycles. The result of electricity measurements shows that the resistance of SnO2-ZnO core-shell nanowires (ALD: 200 cycles) is 925 Ω, which is much lower than pure SnO2 nanowires (3.6 × 106 Ω). The result of UV light test shows that the recovery time of SnO2-ZnO core-shell nanowires (ALD: 200 cycles) is 328 seconds, which is lower than pure SnO2 nanowires (938 seconds). These results demonstrated that the SnO2-ZnO core-shell nanowires have potential application as UV photodetectors with high photon-sensing properties
    corecore