5,609 research outputs found

    Impacts of energy efficiency retrofitting measures on indoor PM concentrations across different income groups in England: a modelling study

    Get PDF
    As part of an effort to reduce carbon emissions in the UK, policies encouraging the energy-efficient retrofit of domestic properties are being implemented. Typical retrofits, including installation of insulation and double glazing can cause tightening of the building envelope which may affect indoor air quality (IAQ) impacting occupant health. Using the example of PM (an airborne pollutant with known health impacts), this study considers the influence of energy-efficient retrofits on indoor PM concentrations in domestic properties both above and below the low-income threshold (LIT) for a range of tenancies across England. Simulations using EnergyPlus and its integrated Generic Contaminant model are employed to predict indoor PM exposures from both indoor and outdoor sources in building archetypes representative of (i) the existing housing stock and (ii) a retrofitted English housing stock. The exposures of occupants for buildings occupied by groups above and below the LIT are then estimated under current conditions and following retrofits. One-way ANOVA tests were applied to clarify results and investigate differences between the various income and tenure groups. Results indicate that all tenures below the LIT experience greater indoor PM concentrations than those above, suggesting possible social inequalities driven by housing, leading to consequences for health

    Health effects of home energy efficiency interventions in England: a modelling study

    Get PDF
    Objective: To assess potential public health impacts of changes to indoor air quality and temperature due to energy efficiency retrofits in English dwellings to meet 2030 carbon reduction targets. Design: Health impact modelling study. Setting: England. Participants: English household population. Intervention: Three retrofit scenarios were modelled: (1) fabric and ventilation retrofits installed assuming building regulations are met. (2) As with scenario (1) but with additional ventilation for homes at risk of poor ventilation. (3) As with scenario (1) but with no additional ventilation to illustrate the potential risk of weak regulations and non-compliance. Main Outcome: Primary outcomes were changes in quality adjusted life years (QALYs) over 50 years from cardiorespiratory diseases, lung cancer, asthma and common mental disorders due to changes in indoor air pollutants, including: second-hand tobacco smoke, PM2.5 from indoor and outdoor sources, radon, mould, and indoor winter temperatures. Results: The modelling study estimates showed that scenario (1) resulted in positive effects on net mortality and morbidity of 2,241 (95% credible intervals (CI) 2,085 to 2,397) QALYs per 10,000 persons over 50 years due to improved temperatures and reduced exposure to indoor pollutants, despite an increase in exposure to outdoor–generated PM2.5. Scenario (2) resulted in a negative impact of -728 (95% CI -864 to -592) QALYs per 10,000 persons over 50 years due to an overall increase in indoor pollutant exposures. Scenario (3) resulted in -539 (95% CI -678 to -399) QALYs per 10,000 persons over 50 years due to an increase in indoor exposures despite targeting. Conclusions: If properly implemented alongside ventilation, energy efficiency retrofits in housing can improve health by reducing exposure to cold and air pollutants. Maximising the health benefits requires careful understanding of the balance of changes in pollutant exposures, highlighting the importance of ventilation to mitigate the risk of poor indoor air quality

    Modelling population exposure to high indoor temperatures under changing climates, housing conditions, and urban environments in England

    Get PDF
    : The exposure of an individual to heat during hot weather depends on several factors including local outdoor temperatures and possible Urban Heat Island (UHI) effects, the thermal performance of the building they inhabit, and any actions that they are able to take in order to modify the indoor thermal conditions. There is an increasing body of research that seeks to understand how housing, UHI, and occupant profiles may alter the risk of mortality during hot weather. Housing overheating models have been of particular interest due to the amount of time spent indoors and the need to improve the energy efficiency of the UK housing stock. A number of housing overheating models have been created in order to understand how changes to the building stock and climate may alter heat exposure and risks of heatrelated mortality. We briefly describe the development of a metamodel – a model derived from the outputs of EnergyPlus dynamic thermal simulation models of building variants – and its application to a housing stock model representative of the West Midlands, UK. We model the stock under a ‘current’ scenario, as described by the 2010-2011 English Housing Survey, and then following a full energy-efficient building fabric retrofit or the installation of external window shutters. Initial results indicate a wide range of overheating risks inside dwelling variants in Birmingham, with flats and bungalows most vulnerable to overheating, and detached dwellings least vulnerable. Modelling of the full retrofit of buildings indicated that the stock would experience an overall increase in overheating, while external shutters were able to decrease overheating significantly

    Housing as a modifier of air contaminant and temperature exposure in Great Britain: A modelling framework

    Get PDF
    This paper presents the development of a modelling framework that quantifies the modifying effect of dwelling characteristics on exposure to indoor air pollution and excess temperature. A georeferenced domestic building stock model of Great Britain was created using national housing surveys, historical weather, and local terrain data. Dynamic building performance simulation was applied to estimate indoor air pollution and overheating risk metrics at the individual building level. These metrics were then aggregated at various geographic units and mapped across Britain within a Geographic Information System (GIS) environment to compare spatial trends. Results indicate that flats and newly built properties are characterised by lower indoor air pollution from outdoor sources, but higher air pollution from indoor sources. Flats, bungalows and newly built, more airtight dwellings are found to be more prone to overheating. Consequently, urban populations may experience higher levels of pollution from indoor sources and overheating resulting from the higher prevalence of flats in cities

    Mapping indoor overheating and air pollution risk modification across Great Britain: A modelling study

    Get PDF
    Housing has long been thought to play a significant role in population exposure to environmental hazards such as high temperatures and air pollution. However, there is sparse data describing how housing may modify heat and air pollution exposure such that housing's role in poor health and mortality from these hazards may be estimated. This paper describes the development of individual-address level indoor overheating and air pollution risk modifiers for Great Britain, for use alongside historical weather, outdoor air pollution, population socio-economic data, and mortality data in a large-scale epidemiological investigation. A geographically-referenced housing stock database was developed using the Homes Energy Efficiency Database (HEED) and the English Housing Survey (EHS). Simulations of unique combinations of building, fabric, occupation, and environment were run using a modelling framework developed for EnergyPlus 8.0, estimating indoor temperature metrics, indoor/outdoor ratio of pollution from outdoor sources, and indoor air pollution from multiple indoor sources. Results were compiled, matched back to individual properties in HEED, and mapped using Geographical Information Systems (GIS). Results indicate urban areas had higher numbers of buildings prone to overheating, reduced levels indoor air pollution from outdoor sources, and higher air pollution from indoor sources relative to rural areas, driven largely by variations in building types. The results provide the first national-scale quantitative estimate of heat and indoor air pollution modification by dwellings, aggregated at levels suitable for inclusion in health analysis

    The modifying effect of the building envelope on population exposure to PM2.5 from outdoor sources.

    Get PDF
    UNLABELLED: A number of studies have estimated population exposure to PM2.5 by examining modeled or measured outdoor PM2.5 levels. However, few have taken into account the mediating effects of building characteristics on the ingress of PM2.5 from outdoor sources and its impact on population exposure in the indoor domestic environment. This study describes how building simulation can be used to determine the indoor concentration of outdoor-sourced pollution for different housing typologies and how the results can be mapped using building stock models and Geographical Information Systems software to demonstrate the modifying effect of dwellings on occupant exposure to PM2.5 across London. Building archetypes broadly representative of those in the Greater London Authority were simulated for pollution infiltration using EnergyPlus. In addition, the influence of occupant behavior on indoor levels of PM2.5 from outdoor sources was examined using a temperature-dependent window-opening scenario. Results demonstrate a range of I/O ratios of PM2.5 , with detached and semi-detached dwellings most vulnerable to high levels of infiltration. When the results are mapped, central London shows lower I/O ratios of PM2.5 compared with outer London, an apparent inversion of exposure most likely caused by the prevalence of flats rather than detached or semi-detached properties. PRACTICAL IMPLICATIONS: Population exposure to air pollution is typically evaluated using the outdoor concentration of pollutants and does not account for the fact that people in London spend over 80% of their time indoors. In this article, building simulation is used to model the infiltration of outdoor PM2.5 into the domestic indoor environment for dwellings in a London building stock model, and the results mapped. The results show the variation in relative vulnerability of dwellings to pollution infiltration, as well as an estimated absolute indoor concentration across the Greater London Authority (GLA) scaled by local outdoor levels. The practical application of this work is a better understanding of the modifying effect of the building geometry and envelope design on pollution exposure, and how the London building stock may alter exposure. The results will be used to inform population exposure to PM2.5 in future environmental epidemiological studies

    Dehydrative etherification reactions of glycerol with alcohols catalyzed by recyclable nanoporous aluminosilicates: telescoped routes to glyceryl ethers

    Get PDF
    Catalytic strategies for the efficient transformation of abundant sustainable bioderived molecules, such as glycerol, into higher value more useful products is an important research goal. In this study, we demonstrate that atom efficient dehydrative etherification reactions of glycerol with activated alcohols are effectively catalyzed by nanoporous aluminosilicate materials in dimethylcarbonate (DMC) to produce the corresponding 1-substituted glyceryl ethers in high yield. By carrying out the reaction in acetone, it is possible to capitalize on the ability of these materials to catalyze the corresponding acetalization reaction, allowing for the development of novel, telescoped acetalization-dehydrative etherification reaction sequences to selectively produce protected solketal derivatives. These materials also catalyze the telescoped reaction of glycerol with <i>tert</i>-butanol (TBA) in acetone to produce the corresponding solketal mono <i>tert</i>-butyl ether product in high yield, providing a potential route to convert glycerol directly into a useful and sustainable fuel additive

    Alzheimer's Disease Genes Are Associated with Measures of Cognitive Ageing in the Lothian Birth Cohorts of 1921 and 1936

    Get PDF
    Alzheimer's disease patients have deficits in specific cognitive domains, and susceptibility genes for this disease may influence human cognition in nondemented individuals. To evaluate the role of Alzheimer's disease-linked genetic variation on cognition and normal cognitive ageing, we investigated two Scottish cohorts for which assessments in major cognitive domains are available: the Lothian Birth Cohort of 1921 and the Lothian Birth Cohort of 1936, consisting of 505 and 998 individuals, respectively. 158 SNPs from eleven genes were evaluated. Single SNP analyses did not reveal any statistical association after correction for multiple testing. One haplotype from TRAPPC6A was associated with nonverbal reasoning in both cohorts and combined data sets. This haplotype explains a small proportion of the phenotypic variability (1.8%). These findings warrant further investigation as biological modifiers of cognitive ageing

    Identication-robust moment-based tests for Markov switching in autoregressive models

    Get PDF
    This paper develops tests of the null hypothesis of linearity in the context of autoregressive models with Markov-switching means and variances. These tests are robust to the identification failures that plague conventional likelihood-based inference methods. The approach exploits the moments of normal mixtures implied by the regime-switching process and uses Monte Carlo test techniques to deal with the presence of an autoregressive component in the model specification. The proposed tests have very respectable power in comparison with the optimal tests for Markov-switching parameters of Carrasco et al. (2014), and they are also quite attractive owing to their computational simplicity. The new tests are illustrated with an empirical application to an autoregressive model of USA output growth

    Structural characterization of Niobium Phosphate Catalysts used for the Oxidative Dehydrogenation of Ethane to Ethylene

    Get PDF
    Extended abstract of a paper presented at Microscopy and Microanalysis 2011 in Nashville, Tennessee, USA, August 7–August 11, 2011.</jats:p
    corecore