78,593 research outputs found

    Collective Quartics and Dangerous Singlets in Little Higgs

    Full text link
    Any extension of the standard model that aims to describe TeV-scale physics without fine-tuning must have a radiatively-stable Higgs potential. In little Higgs theories, radiative stability is achieved through so-called collective symmetry breaking. In this letter, we focus on the necessary conditions for a little Higgs to have a collective Higgs quartic coupling. In one-Higgs doublet models, a collective quartic requires an electroweak triplet scalar. In two-Higgs doublet models, a collective quartic requires a triplet or singlet scalar. As a corollary of this study, we show that some little Higgs theories have dangerous singlets, a pathology where collective symmetry breaking does not suppress quadratically-divergent corrections to the Higgs mass.Comment: 4 pages; v2: clarified the existing literature; v3: version to appear in JHE

    Probing the SUSY breaking scale at an e−e−e^-e^- collider

    Get PDF
    If supersymmetry is spontaneously at a low energy scale then the resulting gravitino would be very light. The interaction strength of the longitudinal components of such a light gravitino to electron-selectron pair then becomes comparable to that of electroweak interactions. Such a light gravitino could modify the cross-section for e^_L e^_R-->\tilde {e}_L\tilde {e}_R from its MSSM value. Precision measurement of this cross-section could therefore be used to probe the low energy SUSY breaking scale.Comment: Plain Tex, 7 pages, No figure

    One Loop Renormalization of the Littlest Higgs Model

    Get PDF
    In Little Higgs models a collective symmetry prevents the Higgs from acquiring a quadratically divergent mass at one loop. This collective symmetry is broken by weakly gauged interactions. Terms, like Yukawa couplings, that display collective symmetry in the bare Lagrangian are generically renormalized into a sum of terms that do not respect the collective symmetry except possibly at one renormalization point where the couplings are related so that the symmetry is restored. We study here the one loop renormalization of a prototypical example, the Littlest Higgs Model. Some features of the renormalization of this model are novel, unfamiliar form similar chiral Lagrangian studies.Comment: 23 pages, 17 eps figure

    Colossal negative magnetoresistance in dilute fluorinated graphene

    Get PDF
    Adatoms offer an effective route to modify and engineer the properties of graphene. In this work, we create dilute fluorinated graphene using a clean, controlled and reversible approach. At low carrier densities, the system is strongly localized and exhibits an unexpected, colossal negative magnetoresistance. The zero-field resistance is reduced by a factor of 40 at the highest field of 9 T and shows no sign of saturation. Unusual "staircase" field dependence is observed below 5 K. The magnetoresistance is highly anisotropic. We discuss possible origins, considering quantum interference effects and adatom-induced magnetism in graphene.Comment: 21 pages, 4 figures, including supplementary informatio

    Elastic Scattering and Direct Detection of Kaluza-Klein Dark Matter

    Full text link
    Recently a new dark matter candidate has been proposed as a consequence of universal compact extra dimensions. It was found that to account for cosmological observations, the masses of the first Kaluza-Klein modes (and thus the approximate size of the extra dimension) should be in the range 600-1200 GeV when the lightest Kaluza-Klein particle (LKP) corresponds to the hypercharge boson and in the range 1 - 1.8 TeV when it corresponds to a neutrino. In this article, we compute the elastic scattering cross sections between Kaluza-Klein dark matter and nuclei both when the lightest Kaluza-Klein particle is a KK mode of a weak gauge boson, and when it is a neutrino. We include nuclear form factor effects which are important to take into account due to the large LKP masses favored by estimates of the relic density. We present both differential and integrated rates for present and proposed Germanium, NaI and Xenon detectors. Observable rates at current detectors are typically less than one event per year, but the next generation of detectors can probe a significant fraction of the relevant parameter space.Comment: 23 pages, 11 figures; v2,v3: Ref. added, discussion improved, conclusions unchanged. v4: Introduction was expanded to be more appropriate for non experts. Various clarifications added in the text. Version to be published in New Journal of Physic

    Phenomenology of the Littlest Higgs with T-Parity

    Full text link
    Little Higgs models offer an interesting approach to weakly coupled electroweak symmetry breaking without fine tuning. The original little Higgs models were plagued by strong constraints from electroweak precision data which required a fine tuning to be reintroduced. An economical solution to this problem is to introduce a discrete symmetry (analogous to R-parity of SUSY) called T-parity. T-parity not only eliminates most constraints from electroweak precision data, but it also leads to a promising dark matter candidate. In this paper we investigate the dark matter candidate in the littlest Higgs model with T-parity. We find bounds on the symmetry breaking scale f as a function of the Higgs mass by calculating the relic density. We begin the study of the LHC phenomenology of the littlest Higgs model with T-parity. We find that the model offers an interesting collider signature that has a generic missing energy signal which could "fake" SUSY at the LHC. We also investigate the properties of the heavy partner of the top quark which is common to all littlest Higgs models, and how its properties are modified with the introduction of T-parity. We include an appendix with a list of Feynman rules specific to the littlest Higgs with T-parity to facilitate further study.Comment: 32 pages, 8 figures; dark matter bounds revised; comphep model files made publicly available at http://www.lns.cornell.edu/public/theory/tparity

    Measuring Invisible Particle Masses Using a Single Short Decay Chain

    Full text link
    We consider the mass measurement at hadron colliders for a decay chain of two steps, which ends with a missing particle. Such a topology appears as a subprocess of signal events of many new physics models which contain a dark matter candidate. From the two visible particles coming from the decay chain, only one invariant mass combination can be formed and hence it is na\"ively expected that the masses of the three invisible particles in the decay chain cannot be determined from a single end point of the invariant mass distribution. We show that the event distribution in the log⁥(E1T/E2T)\log(E_{1T}/E_{2T}) vs. invariant mass-squared plane, where E1TE_{1T}, E2TE_{2T} are the transverse energies of the two visible particles, contains the information of all three invisible particle masses and allows them to be extracted individually. The experimental smearing and combinatorial issues pose challenges to the mass measurements. However, in many cases the three invisible particle masses in the decay chain can be determined with reasonable accuracies.Comment: 45 pages, 32 figure
    • 

    corecore