13,307 research outputs found

    Conserved cosmological structures in the one-loop superstring effective action

    Get PDF
    A generic form of low-energy effective action of superstring theories with one-loop quantum correction is well known. Based on this action we derive the complete perturbation equations and general analytic solutions in the cosmological spacetime. Using the solutions we identify conserved quantities characterizing the perturbations: the amplitude of gravitational wave and the perturbed three-space curvature in the uniform-field gauge both in the large-scale limit, and the angular-momentum of rotational perturbation are conserved independently of changing gravity sector. Implications for calculating perturbation spectra generated in the inflation era based on the string action are presented.Comment: 5 pages, no figure, To appear in Phys. Rev.

    String theoretic axion coupling and the evolution of cosmic structures

    Full text link
    We examine the effects of the axion coupling to RR~R\tilde{R} on the evolution of cosmic structures. It is shown that the evolutions of the scalar- and vector-type perturbations are not affected by this axion coupling. However the axion coupling causes an asymmetric evolution of the two polarization states of the tensor-type perturbation, which may lead to a sizable polarization asymmetry in the cosmological gravitational wave if inflation involves a period in which the axion coupling is important. The polarization asymmetry produced during inflation are conserved over the subsequent evolution as long as the scales remain in the large-scale limit, and thus this may lead to an observable trace in the cosmic microwave background radiation.Comment: 10 pages, REVte

    Coulomb Blockade and Kondo Effect in a Quantum Hall Antidot

    Full text link
    We propose a general capacitive model for an antidot, which has two localized edge states with different spins in the quantum Hall regime. The capacitive coupling of localized excess charges, which are generated around the antidot due to magnetic flux quantization, and their effective spin fluctuation can result in Coulomb blockade, h/(2e) Aharonov-Bohm oscillations, and the Kondo effect. The resultant conductance is in qualitative agreement with recent experimental data.Comment: 3 figures, to appear in Physical Review Letter

    No-boundary measure and preference for large e-foldings in multi-field inflation

    Full text link
    The no-boundary wave function of quantum gravity usually assigns only very small probability to long periods of inflation. This was a reason to doubt about the no-boundary wave function to explain the observational universe. We study the no-boundary proposal in the context of multi-field inflation to see whether the number of fields changes the situation. For a simple model, we find that indeed the no-boundary wave function can give higher probability for sufficient inflation, but the number of fields involved has to be very high.Comment: 16 pages, 2 figure

    Singularities in scalar-tensor gravity

    Full text link
    The analysis of certain singularities in scalar-tensor gravity contained in a recent paper is completed, and situations are pointed out in which these singularities cannot occur.Comment: 6 pages, LaTe

    X-ray magnetic circular dichroism characterization of GaN/Ga1-xMnxN digital ferromagnetic heterostructure

    Full text link
    We have investigated the magnetic properties of a GaN/Ga1-xMnxN (x = 0.1) digital ferromagnetic heterostructure (DFH) showing ferromagnetic behavior using soft x-ray absorption spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD). The Mn L2,3-edge XAS spectra were similar to those of Ga1-xMnxN random alloy thin films, indicating a substitutional doping of high concentration Mn into GaN. From the XMCD measurements, it was revealed that paramagnetic and ferromagnetic Mn atoms coexisted in the Ga1-xMnxN digital layers. The ferromagnetic moment per Mn atom estimated from XMCD agreed well with that estimated from SQUID measurements. From these results, we conclude that the ferromagnetic behavior of the GaN/Ga1-xMnxN DFH sample arises only from substitutional Mn2+ ions in the Ga1-xMnxN digital layers and not from ferromagnetic precipitates. Subtle differences were also found from the XMCD spectra between the electronic states of the ferromagnetic and paramagnetic Mn2+ ions.Comment: 12 pages, 8 figure

    Cosmological Gravitational Wave in a Gravity with Quadratic Order Curvature Couplings

    Get PDF
    We present a set of equations describing the cosmological gravitational wave in a gravity theory with quadratic order gravitational coupling terms which naturally arise in quantum correction procedures. It is known that the gravitational wave equation in the gravity theories with a general f(R)f(R) term in the action leads to a second order differential equation with the only correction factor appearing in the damping term. The case for a RabRabR^{ab} R_{ab} term is completely different. The gravitational wave is described by a fourth order differential equation both in time and space. However, curiously, we find that the contributions to the background evolution are qualitatively the same for both terms.Comment: 4 pages, revtex, no figure

    Phase Change Observed in Ultrathin Ba0.5Sr0.5TiO3 Films by in-situ Resonant Photoemission Spectroscopy

    Full text link
    Epitaxial Ba0.5Sr0.5TiO3 thin films were prepared on Nb-doped SrTiO3 (100)substrates by the pulsed laser deposition technique, and were studied by measuring the Ti 2p - 3d resonant photoemission spectra in the valence-band region as a function of film thickness, both at room temperature and low temperature. Our results demonstrated an abrupt variation in the spectral structures between 2.8 nm (~7 monolayers) and 2.0 nm (~5 monolayers) Ba0.5Sr0.5TiO3 films, suggesting that there exists a critical thickness for phase change in the range of 2.0 nm to 2.8 nm. This may be ascribed mainly to the intrinsic size effects.Comment: 13 pages, 4 figure
    • …
    corecore