59 research outputs found

    High-yielding 18F radiosynthesis of a novel oxytocin receptor tracer, a probe for nose-to-brain oxytocin uptake in vivo

    Get PDF
    A novel Al18F labelled peptide tracer for PET imaging of oxytocin receptor has been accessed through a high radiochemical yield approach. This tracer showed comparable affinity and higher selectivity and stability compared to oxytocin, and was used to demonstrate direct nose-to-brain uptake following intranasal administration, a common yet controversial delivery route for oxytocin-based therapeutics

    Management of swallowing disorders in ICU patients - A multinational expert opinion.

    Get PDF
    BACKGROUND Dysphagia is common in intensive care unit (ICU) patients, yet it remains underrecognized and often unmanaged despite being associated with life-threatening complications, prolonged ICU stays and hospitalization. PURPOSE To propose an expert opinion for the diagnosis and management of dysphagia developed from evidence-based clinical recommendations and practitioner insights. METHODS A multinational group of dysphagia and critical care experts conducted a literature review using a modified ACCORD methodology. Based on a fusion of the available evidence and the panel's clinical experience, an expert opinion on best practice management was developed. RESULTS The panel recommends adopting clinical algorithms intended to promote standardized, high-quality care that triggers timely systematic dysphagia screening, assessment, and treatment of extubated and tracheostomized patients in the ICU. CONCLUSIONS Given the lack of robust scientific evidence, two clinical management algorithms are proposed for use by multidisciplinary teams to improve early systematic detection and effective management of dysphagia in ICU patients. Additionally, emerging therapeutic options such as neurostimulation have the potential to improve the quality of ICU dysphagia care

    Diagnosis and treatment of neurogenic dysphagia - S1 guideline of the German Society of Neurology.

    Get PDF
    INTRODUCTION Neurogenic dysphagia defines swallowing disorders caused by diseases of the central and peripheral nervous system, neuromuscular transmission, or muscles. Neurogenic dysphagia is one of the most common and at the same time most dangerous symptoms of many neurological diseases. Its most important sequelae include aspiration pneumonia, malnutrition and dehydration, and affected patients more often require long-term care and are exposed to an increased mortality. Based on a systematic pubmed research of related original papers, review articles, international guidelines and surveys about the diagnostics and treatment of neurogenic dysphagia, a consensus process was initiated, which included dysphagia experts from 27 medical societies. RECOMMENDATIONS This guideline consists of 53 recommendations covering in its first part the whole diagnostic spectrum from the dysphagia specific medical history, initial dysphagia screening and clinical assessment, to more refined instrumental procedures, such as flexible endoscopic evaluation of swallowing, the videofluoroscopic swallowing study and high-resolution manometry. In addition, specific clinical scenarios are captured, among others the management of patients with nasogastric and tracheotomy tubes. The second part of this guideline is dedicated to the treatment of neurogenic dysphagia. Apart from dietary interventions and behavioral swallowing treatment, interventions to improve oral hygiene, pharmacological treatment options, different modalities of neurostimulation as well as minimally invasive and surgical therapies are dealt with. CONCLUSIONS The diagnosis and treatment of neurogenic dysphagia is challenging and requires a joined effort of different medical professions. While the evidence supporting the implementation of dysphagia screening is rather convincing, further trials are needed to improve the quality of evidence for more refined methods of dysphagia diagnostics and, in particular, the different treatment options of neurogenic dysphagia. The present article is an abridged and translated version of the guideline recently published online ( https://www.awmf.org/uploads/tx_szleitlinien/030-111l_Neurogene-Dysphagie_2020-05.pdf )

    Identification of a Common Gene Expression Response in Different Lung Inflammatory Diseases in Rodents and Macaques

    Get PDF
    To identify gene expression responses common to multiple pulmonary diseases we collected microarray data for acute lung inflammation models from 12 studies and used these in a meta-analysis. The data used include exposures to air pollutants; bacterial, viral, and parasitic infections; and allergic asthma models. Hierarchical clustering revealed a cluster of 383 up-regulated genes with a common response. This cluster contained five subsets, each characterized by more specific functions such as inflammatory response, interferon-induced genes, immune signaling, or cell proliferation. Of these subsets, the inflammatory response was common to all models, interferon-induced responses were more pronounced in bacterial and viral models, and a cell division response was more prominent in parasitic and allergic models. A common cluster containing 157 moderately down-regulated genes was associated with the effects of tissue damage. Responses to influenza in macaques were weaker than in mice, reflecting differences in the degree of lung inflammation and/or virus replication. The existence of a common cluster shows that in vivo lung inflammation in response to various pathogens or exposures proceeds through shared molecular mechanisms

    Harmonics of Circadian Gene Transcription in Mammals

    Get PDF
    The circadian clock is a molecular and cellular oscillator found in most mammalian tissues that regulates rhythmic physiology and behavior. Numerous investigations have addressed the contribution of circadian rhythmicity to cellular, organ, and organismal physiology. We recently developed a method to look at transcriptional oscillations with unprecedented precision and accuracy using high-density time sampling. Here, we report a comparison of oscillating transcription from mouse liver, NIH3T3, and U2OS cells. Several surprising observations resulted from this study, including a 100-fold difference in the number of cycling transcripts in autonomous cellular models of the oscillator versus tissues harvested from intact mice. Strikingly, we found two clusters of genes that cycle at the second and third harmonic of circadian rhythmicity in liver, but not cultured cells. Validation experiments show that 12-hour oscillatory transcripts occur in several other peripheral tissues as well including heart, kidney, and lungs. These harmonics are lost ex vivo, as well as under restricted feeding conditions. Taken in sum, these studies illustrate the importance of time sampling with respect to multiple testing, suggest caution in use of autonomous cellular models to study clock output, and demonstrate the existence of harmonics of circadian gene expression in the mouse

    Molecular Signatures Reveal Circadian Clocks May Orchestrate the Homeorhetic Response to Lactation

    Get PDF
    Genes associated with lactation evolved more slowly than other genes in the mammalian genome. Higher conservation of milk and mammary genes suggest that species variation in milk composition is due in part to the environment and that we must look deeper into the genome for regulation of lactation. At the onset of lactation, metabolic changes are coordinated among multiple tissues through the endocrine system to accommodate the increased demand for nutrients and energy while allowing the animal to remain in homeostasis. This process is known as homeorhesis. Homeorhetic adaptation to lactation has been extensively described; however how these adaptations are orchestrated among multiple tissues remains elusive. To develop a clearer picture of how gene expression is coordinated across multiple tissues during the pregnancy to lactation transition, total RNA was isolated from mammary, liver and adipose tissues collected from rat dams (n = 5) on day 20 of pregnancy and day 1 of lactation, and gene expression was measured using Affymetrix GeneChips. Two types of gene expression analysis were performed. Genes that were differentially expressed between days within a tissue were identified with linear regression, and univariate regression was used to identify genes commonly up-regulated and down-regulated across all tissues. Gene set enrichment analysis showed genes commonly up regulated among the three tissues enriched gene ontologies primary metabolic processes, macromolecular complex assembly and negative regulation of apoptosis ontologies. Genes enriched in transcription regulator activity showed the common up regulation of 2 core molecular clock genes, ARNTL and CLOCK. Commonly down regulated genes enriched Rhythmic process and included: NR1D1, DBP, BHLHB2, OPN4, and HTR7, which regulate intracellular circadian rhythms. Changes in mammary, liver and adipose transcriptomes at the onset of lactation illustrate the complexity of homeorhetic adaptations and suggest that these changes are coordinated through molecular clocks

    Four new HLA class I alleles in Cauacasoids*

    No full text
    • …
    corecore