823 research outputs found

    The dish-Rankine SCSTPE program (Engineering Experiment no. 1)

    Get PDF
    Activities planned for phase 2 Of the Small Community Solar Thermal Power Experiment (PFDR) program are summarized with emphasis on a dish-Rankine point focusing distributed receiver solar thermal electric system. Major design efforts include: (1) development of an advanced concept indirect-heated receiver;(2) development of hardware and software for a totally unmanned power plant control system; (3) implementation of a hybrid digital simulator which will validate plant operation prior to field testing; and (4) the acquisition of an efficient organic Rankine cycle power conversion unit. Preliminary performance analyses indicate that a mass-produced dish-Rankine PFDR system is potentially capable of producing electricity at a levelized busbar energy cost of 60 to 70 mills per KWh and with a capital cost of about $1300 per KW

    Development of fuel cell electrodes, Electrode improvement and life testing, tasks 1 and 3 Final report, 30 Jun. 1966 - 30 Apr. 1968

    Get PDF
    Volt-ampere characteristics improvement and life testing of electrodes for hydrogen oxygen fuel cell

    Cisplatin chemotherapy (without erythropoietin) and risk of life-threatening thromboembolic events in carcinoma of the uterine cervix: the tip of the iceberg? A review of the literature

    Get PDF
    BACKGROUND: The risk of severe cardiovascular toxicity, specifically thromboembolic events (TE), in patients with cervical cancer receiving concurrent irradiation and cisplatin chemotherapy is reported to be less than 1% in several large prospective trials. However, the anecdotal risk appears to be far higher. RESULTS AND DISCUSSION: A review of several prospective trials demonstrates no treatment related grade 4 cardiovascular toxicities and only two grade 5 toxicities in 1424 (0.1%) collective patients. A recent publication and our own unpublished experience finds 6 of 128 (4.7%) patients developed grade 4 to 5 cardiovascular (thrombosis/embolism) toxicity. The differenc in incidence of severe or life threatening cardiovascular toxicity of 0.1 versus 4.7% is highly statistically significant (p < 0.00001.) CONCLUSION: This dramatic difference in incidence of cardiovascular toxicity raises the possibility that cardiovascular toxicities were inadequately reported on the listed prospective trials. For those patients enrolled in prospective trials, we suggest that thromboses should be diligently documented and reported. Only after the true incidence of thromboses is established can we implement appropriate levels of early screening and intervention that may prevent life threatening complications

    Visual cycle proteins: Structure, function, and roles in human retinal disease

    Get PDF
    Here, we seek to summarize the current understanding of the biochemical and molecular events mediated by visual cycle molecules in the eye. The structures and functions of selected visual cycle proteins and their roles in human retinal diseases are also highlighted. Genetic mutations and malfunctions of these proteins provide etiological evidence that many ocular diseases arise from anomalies of retinoid (vitamin A) metabolism and related visual processes. Genetic retinal disorders such as retinitis pigmentosa, Leber\u27s congenital amaurosis, and Stargardt\u27s disease are linked to structural changes in visual cycle proteins. Moreover, recent reports suggest that visual cycle proteins may also play a role in the development of diabetic retinopathy. Basic science has laid the groundwork for finding a cure for many of these blindness-causing afflictions, but much work remains. Some translational research projects have advanced to the clinical trial stage, while many others are still in progress, and more are at the ideas stage and remain yet to be tested. Some examples of these studies are discussed. Recent and future progress in our understanding of the visual cycle will inform intervention strategies to preserve human vision and prevent blindness

    Microfluidic Preparation of Polymer-Nucleic Acid Nanocomplexes Improves Nonviral Gene Transfer

    Get PDF
    As the designs of polymer systems used to deliver nucleic acids continue to evolve, it is becoming increasingly apparent that the basic bulk manufacturing techniques of the past will be insufficient to produce polymer-nucleic acid nanocomplexes that possess the uniformity, stability, and potency required for their successful clinical translation and widespread commercialization. Traditional bulk-prepared products are often physicochemically heterogeneous and may vary significantly from one batch to the next. Here we show that preparation of bioreducible nanocomplexes with an emulsion-based droplet microfluidic system produces significantly improved nanoparticles that are up to fifty percent smaller, more uniform, and are less prone to aggregation. The intracellular integrity of nanocomplexes prepared with this microfluidic method is significantly prolonged, as detected using a high-throughput flow cytometric quantum dot Förster resonance energy transfer nanosensor system. These physical attributes conspire to consistently enhance the delivery of both plasmid DNA and messenger RNA payloads in stem cells, primary cells, and human cell lines. Innovation in processing is necessary to move the field toward the broader clinical implementation of safe and effective nonviral nucleic acid therapeutics, and preparation with droplet microfluidics represents a step forward in addressing the critical barrier of robust and reproducible nanocomplex productio
    corecore