5,974 research outputs found
Complex networks in brain electrical activity
We analyze the complex networks associated with brain electrical activity.
Multichannel EEG measurements are first processed to obtain 3D voxel
activations using the tomographic algorithm LORETA. Then, the correlation of
the current intensity activation between voxel pairs is computed to produce a
voxel cross-correlation coefficient matrix. Using several correlation
thresholds, the cross-correlation matrix is then transformed into a network
connectivity matrix and analyzed. To study a specific example, we selected data
from an earlier experiment focusing on the MMN brain wave. The resulting
analysis highlights significant differences between the spatial activations
associated with Standard and Deviant tones, with interesting physiological
implications. When compared to random data networks, physiological networks are
more connected, with longer links and shorter path lengths. Furthermore, as
compared to the Deviant case, Standard data networks are more connected, with
longer links and shorter path lengths--i.e., with a stronger ``small worlds''
character. The comparison between both networks shows that areas known to be
activated in the MMN wave are connected. In particular, the analysis supports
the idea that supra-temporal and inferior frontal data work together in the
processing of the differences between sounds by highlighting an increased
connectivity in the response to a novel sound.Comment: 22 pages, 5 figures. Starlab preprint. This version is an attempt to
include better figures (no content change
Band gap control via tuning of inversion degree in CdInS spinel
Based on theoretical arguments we propose a possible route for controlling
the band-gap in the promising photovoltaic material CdInS. Our
\textit{ab initio} calculations show that the experimental degree of inversion
in this spinel (fraction of tetrahedral sites occupied by In) corresponds
approximately to the equilibrium value given by the minimum of the theoretical
inversion free energy at a typical synthesis temperature. Modification of this
temperature, or of the cooling rate after synthesis, is then expected to change
the inversion degree, which in turn sensitively tunes the electronic band-gap
of the solid, as shown here by accurate screened hybrid functional
calculations.Comment: In press in Applied Physics Letters (2012); 4 pages, 2 figures, 1
tabl
- …