478 research outputs found

    A Forward Branching Phase-Space Generator

    Full text link
    We develop a forward branching phase-space generator for use in next-to-leading order parton level event generators. By performing 2 -> 3 branchings from a fixed jet phase-space point, all bremsstrahlung events contributing to the given jet configuration are generated. The resulting phase-space integration is three-dimensional irrespective of the considered jet multiplicity. In this first study, we use the forward branching phase-space generator to calculate in the leading-color approximation next-to-leading order corrections to fully differential gluonic jet configurations.Comment: 35 pages, 5 figures, 1 tabl

    Audit of Antenatal Testing of Sexually Transmissible Infections and Blood Borne Viruses at Western Australian Hospitals

    Get PDF
    In August 2007, the Western Australian Department of Health (DOH) released updated recommendations for testing of sexually transmissible infections (STI) and blood-borne viruses (BBV) in antenates. Prior to this, the Royal Australian & New Zealand College of Obstetricians & Gynaecologists (RANZCOG) antenatal testing recommendations had been accepted practice in most antenatal settings. The RANZCOG recommends that testing for HIV, syphilis, hepatitis B and C be offered at the first antenatal visit. The DOH recommends that in addition, chlamydia testing be offered. We conducted a baseline audit of antenatal STI/BBV testing in women who delivered at selected public hospitals before the DOH recommendations. We examined the medical records of 200 women who had delivered before 1st July 2007 from each of the sevenWAhospitals included in the audit. STI and BBV testing information and demographic data were collected. Of the 1,409 women included, 1,205 (86%) were non-Aboriginal and 200 (14%) were Aboriginal. High proportions of women had been tested for HIV (76%), syphilis (86%), hepatitis C (87%) and hepatitis B (88%). Overall, 72% of women had undergone STI/BBV testing in accordance with RANZCOG recommendations. However, chlamydia testing was evident in only 18% of records. STI/BBV prevalence ranged from 3.9% (CI 1.5– 6.3%) for chlamydia, to 1.7% (CI 1–2.4%) for hepatitis C, 0.7% (CI 0.3–1.2) for hepatitis B and 0.6% (CI 0.2–1) for syphilis. Prior to the DOH recommendations, nearly three-quarters of antenates had undergone STI/BBV testing in accordance with RANZCOG recommendations, but less than one fifth had been tested for chlamydia. The DOH recommendations will be further promoted with the assistance of hospitals and other stakeholders. A future audit will be conducted to determine the proportion of women tested according to the DOH recommendations. The hand book from this conference is available for download Published in 2008 by the Australasian Society for HIV Medicine Inc © Australasian Society for HIV Medicine Inc 2008 ISBN: 978-1-920773-59-

    Implications of Hadron Collider Observables on Parton Distribution Function Uncertainties

    Get PDF
    Standard parton distribution function sets do not have rigorously quantified uncertainties. In recent years it has become apparent that these uncertainties play an important role in the interpretation of hadron collider data. In this paper, using the framework of statistical inference, we illustrate a technique that can be used to efficiently propagate the uncertainties to new observables, assess the compatibility of new data with an initial fit, and, in case the compatibility is good, include the new data in the fit.Comment: 22 pages, 5 figure

    Neural Network Parametrization of Deep-Inelastic Structure Functions

    Full text link
    We construct a parametrization of deep-inelastic structure functions which retains information on experimental errors and correlations, and which does not introduce any theoretical bias while interpolating between existing data points. We generate a Monte Carlo sample of pseudo-data configurations and we train an ensemble of neural networks on them. This effectively provides us with a probability measure in the space of structure functions, within the whole kinematic region where data are available. This measure can then be used to determine the value of the structure function, its error, point-to-point correlations and generally the value and uncertainty of any function of the structure function itself. We apply this technique to the determination of the structure function F_2 of the proton and deuteron, and a precision determination of the isotriplet combination F_2[p-d]. We discuss in detail these results, check their stability and accuracy, and make them available in various formats for applications.Comment: Latex, 43 pages, 22 figures. (v2) Final version, published in JHEP; Sect.5.2 and Fig.9 improved, a few typos corrected and other minor improvements. (v3) Some inconsequential typos in Tab.1 and Tab 5 corrected. Neural parametrization available at http://sophia.ecm.ub.es/f2neura

    On the Numerical Evaluation of One-Loop Amplitudes: the Gluonic Case

    Get PDF
    We develop an algorithm of polynomial complexity for evaluating one-loop amplitudes with an arbitrary number of external particles. The algorithm is implemented in the Rocket program. Starting from particle vertices given by Feynman rules, tree amplitudes are constructed using recursive relations. The tree amplitudes are then used to build one-loop amplitudes using an integer dimension on-shell cut method. As a first application we considered only three and four gluon vertices calculating the pure gluonic one-loop amplitudes for arbitrary external helicity or polarization states. We compare our numerical results to analytical results in the literature, analyze the time behavior of the algorithm and the accuracy of the results, and give explicit results for fixed phase space points for up to twenty external gluons.Comment: 22 pages, 9 figures; v2: references added, version accepted for publicatio

    Snowmass 2001: Jet Energy Flow Project

    Get PDF
    Conventional cone jet algorithms arose from heuristic considerations of LO hard scattering coupled to independent showering. These algorithms implicitly assume that the final states of individual events can be mapped onto a unique set of jets that are in turn associated with a unique set of underlying hard scattering partons. Thus each final state hadron is assigned to a unique underlying parton. The Jet Energy Flow (JEF) analysis described here does not make such assumptions. The final states of individual events are instead described in terms of flow distributions of hadronic energy. Quantities of physical interest are constructed from the energy flow distribution summed over all events. The resulting analysis is less sensitive to higher order perturbative corrections and the impact of showering and hadronization than the standard cone algorithms.Comment: REVTeX4, 13 pages, 6 figures; Contribution to the P5 Working Group on QCD and Strong Interactions at Snowmass 200

    Effects of QCD Resummation on Distributions of Leptons from the Decay of Electroweak Vector Bosons

    Full text link
    We study the distributions of leptons from the decay of electroweak vector bosons produced in hadron collisions. The effects of the initial state multiple soft-gluon emission, using the Collins--Soper resummation formalism, are included. The resummed results are compared with the next-to-leading-order results for the distributions of the transverse momentum, rapidity asymmetry, and azimuthal angle of the decay leptons.Comment: 12 pages, 3 figures uuencoded, LaTeX, uses epsf.tex for figures. (Was replaced on 5/2/95 because of mailer problems.

    Multi-gluon one-loop amplitudes using tensor integrals

    Full text link
    An efficient numerical algorithm to evaluate one-loop amplitudes using tensor integrals is presented. In particular, it is shown by explicit calculations that for ordered QCD amplitudes with a number of external legs up to 10, its performance is competitive with other methods.Comment: 25 pages, results for quark loops added, accuracy analysis extended, mistakes corrected, reference adde

    Numerical evaluation of loop integrals

    Full text link
    We present a new method for the numerical evaluation of arbitrary loop integrals in dimensional regularization. We first derive Mellin-Barnes integral representations and apply an algorithmic technique, based on the Cauchy theorem, to extract the divergent parts in the epsilon->0 limit. We then perform an epsilon-expansion and evaluate the integral coefficients of the expansion numerically. The method yields stable results in physical kinematic regions avoiding intricate analytic continuations. It can also be applied to evaluate both scalar and tensor integrals without employing reduction methods. We demonstrate our method with specific examples of infrared divergent integrals with many kinematic scales, such as two-loop and three-loop box integrals and tensor integrals of rank six for the one-loop hexagon topology

    Subtraction at NNLO

    Full text link
    We propose a framework for the implementation of a subtraction formalism at NNLO in QCD, based on an observable- and process-independent cancellation of infrared singularities. As a first simple application, we present the calculation of the contribution to the e+e- dijet cross section proportional to C_F T_RComment: 42 pages Latex; 7 figures included. Modifications to the text, and references added; the results are unchange
    • …
    corecore