22 research outputs found

    Fast computation of multi-parametric electromagnetic fields in synchronous machines by using pgd-based fully separated representations

    Get PDF
    A novel Model Order Reduction (MOR) technique is developed to compute high-dimensional parametric solutions for electromagnetic fields in synchronous machines. Specifically, the intrusive version of the Proper Generalized Decomposition (PGD) is employed to simulate a Permanent-Magnet Synchronous Motor (PMSM). The result is a virtual chart allowing real-time evaluation of the magnetic vector potential as a function of the operation point of the motor, or even as a function of constructive parameters, such as the remanent flux in permanent magnets. Currently, these solutions are highly demanded by the industry, especially with the recent developments in the Electric Vehicle (EV). In this framework, standard discretization techniques require highly time-consuming simulations when analyzing, for instance, the noise and vibration in electric motors. The proposed approach is able to construct a virtual chart within a few minutes of off-line simulation, thanks to the use of a fully separated representation in which the solution is written from a series of functions of the space and parameters coordinates, with full space separation made possible by the use of an adapted geometrical mapping. Finally, excellent performances are reported when comparing the reduced-order model with the more standard and computationally costly Finite Element solutions. © 2021 by the authors. Licensee MDPI, Basel, Switzerland

    Flow modelling of quasi-Newtonian fluids in two-scale fibrous fabrics: Advanced simulations

    Get PDF
    Permeability is the fundamental macroscopic material property needed to quantify the flow in a fibrous medium viewed as a porous medium. Composite processing models require the permeability as input data to predict flow patterns and pressure fields. In a previous work, the expressions of macroscopic permeability were derived in a double-scale porosity medium for both Newtonian and generalized Newtonian (shear-thinning) resins. In the linear case, only a microscopic calculation on a representative volume is required, implying as many microscopic calculations as there are representative microscopic volumes in the whole fibrous structure. In the non-linear case, and even when the porous microstructure can be described by a unique representative volume, a large number of microscopic calculations must be carried out as the microscale resin viscosity depends on the macroscopic velocity, which in turn depends on the permeability that results from a microscopic calculation. An original and efficient offline-online procedure was proposed for the solution of non-linear flow problems related to generalized Newtonian fluids in porous media. In this paper, this procedure is generalized to quasi-Newtonian fluids in order to evaluate the effect of extensional viscosity on the resulting upscaled permeability. This work constitutes a natural step forward in the definition of equivalent saturated permeabilities for linear and non-linear fluids

    Nonlinear Shape-Manifold Learning Approach: Concepts, Tools and Applications

    No full text
    International audienceIn this paper, we present the concept of a “shape manifold” designed for reduced order representation of complex “shapes” encountered in mechanical problems, such as design optimization, springback or image correlation. The overall idea is to define the shape space within which evolves the boundary of the structure. The reduced representation is obtained by means of determining the intrinsic dimensionality of the problem, independently of the original design parameters, and by approximating a hyper surface, i.e. a shape manifold, connecting all admissible shapes represented using level set functions. Also, an optimal parameterization may be obtained for arbitrary shapes, where the parameters have to be defined a posteriori. We also developed the predictor-corrector optimization manifold walking algorithms in a reduced shape space that guarantee the admissibility of the solution with no additional constraints. We illustrate the approach on three diverse examples drawn from the field of computational and applied mechanics
    corecore