24 research outputs found

    Operating a full tungsten actively cooled tokamak: overview of WEST first phase of operation

    Get PDF
    WEST is an MA class superconducting, actively cooled, full tungsten (W) tokamak, designed to operate in long pulses up to 1000 s. In support of ITER operation and DEMO conceptual activities, key missions of WEST are: (i) qualification of high heat flux plasma-facing components in integrating both technological and physics aspects in relevant heat and particle exhaust conditions, particularly for the tungsten monoblocks foreseen in ITER divertor; (ii) integrated steady-state operation at high confinement, with a focus on power exhaust issues. During the phase 1 of operation (2017–2020), a set of actively cooled ITER-grade plasma facing unit prototypes was integrated into the inertially cooled W coated startup lower divertor. Up to 8.8 MW of RF power has been coupled to the plasma and divertor heat flux of up to 6 MW m−2 were reached. Long pulse operation was started, using the upper actively cooled divertor, with a discharge of about 1 min achieved. This paper gives an overview of the results achieved in phase 1. Perspectives for phase 2, operating with the full capability of the device with the complete ITER-grade actively cooled lower divertor, are also described

    Estradiol Receptors: A New Evaluation

    No full text

    Platform Emergence in Double Unknown (Technology, Markets): Common Unknown Strategy

    No full text
    International audienceThe proposed chapter deals with platform emergence in double unknown situations when technology and markets are highly uncertain. The interest in technological platform development to enable creation of products and processes that support present and future development of multiple options is widely recognized by practitioners and academics. The existing literature considers that platforms already invented and the development is mostly based on exploiting this common platform core to build future markets and technological derivatives. However, when we are in double unknown situations, markets and technologies are highly uncertain and neither market options, nor platform cores are known. Thus, how to start an exploration? How can one ensure platform emergence in double unknown? What are the market and technology conditions that lead to different strategies of platform emergence? To answer these questions, we formally describe identified strategies and fabricate simple economical model to compare them. We illustrate the insights of the model through a case study of innovative technology development in semiconductor industry. Our results allow for better understanding market and technological conditions that allow for minimization of risks and exploration costs in double unknown and exploration costs in double unknown. Following the principle of value creation across various applications, this work extends the comprehension of generic technology design in double unknown
    corecore