1,974 research outputs found

    Laughlin's wave functions, Coulomb gases and expansions of the discriminant

    Full text link
    In the context of the fractional quantum Hall effect, we investigate Laughlin's celebrated ansatz for the groud state wave function at fractional filling of the lowest Landau level. Interpreting its normalization in terms of a one component plasma, we find the effect of an additional quadrupolar field on the free energy, and derive estimates for the thermodynamically equivalent spherical plasma. In a second part, we present various methods for expanding the wave function in terms of Slater determinants, and obtain sum rules for the coefficients. We also address the apparently simpler question of counting the number of such Slater states using the theory of integral polytopes.Comment: 97 pages, using harvmac (with big option recommended) and epsf, 7 figures available upon request, Saclay preprint Spht 93/12

    Phenomenology of chiral damping in noncentrosymmetric magnets

    Full text link
    A phenomenology of magnetic chiral damping is proposed in the context of magnetic materials lacking inversion symmetry breaking. We show that the magnetic damping tensor adopts a general form that accounts for a component linear in magnetization gradient in the form of Lifshitz invariants. We propose different microscopic mechanisms that can produce such a damping in ferromagnetic metals, among which spin pumping in the presence of anomalous Hall effect and an effective "ss-dd" Dzyaloshinskii-Moriya antisymmetric exchange. The implication of this chiral damping in terms of domain wall motion is investigated in the flow and creep regimes. These predictions have major importance in the context of field- and current-driven texture motion in noncentrosymmetric (ferro-, ferri-, antiferro-)magnets, not limited to metals.Comment: 5 pages, 2 figure

    Families of quasi-exactly solvable extensions of the quantum oscillator in curved spaces

    Full text link
    We introduce two new families of quasi-exactly solvable (QES) extensions of the oscillator in a dd-dimensional constant-curvature space. For the first three members of each family, we obtain closed-form expressions of the energies and wavefunctions for some allowed values of the potential parameters using the Bethe ansatz method. We prove that the first member of each family has a hidden sl(2,R\mathbb{R}) symmetry and is connected with a QES equation of the first or second type, respectively. One-dimensional results are also derived from the dd-dimensional ones with d≥2d \ge 2, thereby getting QES extensions of the Mathews-Lakshmanan nonlinear oscillator.Comment: 30 pages, 8 figures, published versio

    Attractive Fermi gases with unequal spin populations in highly elongated traps

    Full text link
    We investigate two-component attractive Fermi gases with imbalanced spin populations in trapped one dimensional configurations. The ground state properties are determined within local density approximation, starting from the exact Bethe-ansatz equations for the homogeneous case. We predict that the atoms are distributed according to a two-shell structure: a partially polarized phase in the center of the trap and either a fully paired or a fully polarized phase in the wings. The partially polarized core is expected to be a superfluid of the FFLO type. The size of the cloud as well as the critical spin polarization needed to suppress the fully paired shell, are calculated as a function of the coupling strength.Comment: Final accepted versio

    Hunting for open clusters in \textit{Gaia} DR2: the Galactic anticentre

    Full text link
    The Gaia Data Release 2 (DR2) provided an unprecedented volume of precise astrometric and excellent photometric data. In terms of data mining the Gaia catalogue, machine learning methods have shown to be a powerful tool, for instance in the search for unknown stellar structures. Particularly, supervised and unsupervised learning methods combined together significantly improves the detection rate of open clusters. We systematically scan Gaia DR2 in a region covering the Galactic anticentre and the Perseus arm (120≤l≤205(120 \leq l \leq 205 and −10≤b≤10)-10 \leq b \leq 10), with the goal of finding any open clusters that may exist in this region, and fine tuning a previously proposed methodology successfully applied to TGAS data, adapting it to different density regions. Our methodology uses an unsupervised, density-based, clustering algorithm, DBSCAN, that identifies overdensities in the five-dimensional astrometric parameter space (l,b,ϖ,μα∗,μδ)(l,b,\varpi,\mu_{\alpha^*},\mu_{\delta}) that may correspond to physical clusters. The overdensities are separated into physical clusters (open clusters) or random statistical clusters using an artificial neural network to recognise the isochrone pattern that open clusters show in a colour magnitude diagram. The method is able to recover more than 75% of the open clusters confirmed in the search area. Moreover, we detected 53 open clusters unknown previous to Gaia DR2, which represents an increase of more than 22% with respect to the already catalogued clusters in this region. We find that the census of nearby open clusters is not complete. Different machine learning methodologies for a blind search of open clusters are complementary to each other; no single method is able to detect 100% of the existing groups. Our methodology has shown to be a reliable tool for the automatic detection of open clusters, designed to be applied to the full Gaia DR2 catalogue.Comment: 8 pages, accepted by Astronomy and Astrophysics (A&A) the 14th May, 2019. Tables 1 and 2 available at the CD

    A ring in a shell: the large-scale 6D structure of the Vela OB2 complex

    Get PDF
    The Vela OB2 association is a group of 10 Myr stars exhibiting a complex spatial and kinematic substructure. The all-sky Gaia DR2 catalogue contains proper motions, parallaxes (a proxy for distance) and photometry that allow us to separate the various components of Vela OB2. We characterise the distribution of the Vela OB2 stars on a large spatial scale, and study its internal kinematics and dynamic history. We make use of Gaia DR2 astrometry and published Gaia-ESO Survey data. We apply an unsupervised classification algorithm to determine groups of stars with common proper motions and parallaxes. We find that the association is made up of a number of small groups, with a total current mass over 2330 Msun. The three-dimensional distribution of these young stars trace the edge of the gas and dust structure known as the IRAS Vela Shell across 180 pc and shows clear signs of expansion. We propose a common history for Vela OB2 and the IRAS Vela Shell. The event that caused the expansion of the shell happened before the Vela OB2 stars formed, imprinted the expansion in the gas the stars formed from, and most likely triggered star formation.Comment: Accepted by A&A (02 November 2018), 13 pages, 9+2 figure

    On the exactly solvable pairing models for bosons

    Full text link
    We propose the new exactly solvable model for bosons corresponding to the attractive pairing interaction. Using the electrostatic analogy, the solution of this model in thermodynamic limit is found. The transition from the superfluid phase with the Bose condensate and the Bogoliubov - type spectrum of excitations in the weak coupling regime to the incompressible phase with the gap in the excitation spectrum in the strong coupling regime is observed.Comment: 19 page

    A simple construction of elliptic RR-matrices

    Full text link
    We show that Belavin's solutions of the quantum Yang--Baxter equation can be obtained by restricting an infinite RR-matrix to suitable finite dimensional subspaces. This infinite RR-matrix is a modified version of the Shibukawa--Ueno RR-matrix acting on functions of two variables.Comment: 6 page

    More on the exact solution of the O(n) model on a random lattice and an investigation of the case |n|>2

    Get PDF
    For n∈[−2,2]n\in [-2,2] the O(n)O(n) model on a random lattice has critical points to which a scaling behaviour characteristic of 2D gravity interacting with conformal matter fields with c∈[−∞,1]c\in [-\infty,1] can be associated. Previously we have written down an exact solution of this model valid at any point in the coupling constant space and for any nn. The solution was parametrized in terms of an auxiliary function. Here we determine the auxiliary function explicitly as a combination of θ\theta-functions, thereby completing the solution of the model. Using our solution we investigate, for the simplest version of the model, hitherto unexplored regions of the parameter space. For example we determine in a closed form the eigenvalue density without any assumption of being close to or at a critical point. This gives a generalization of the Wigner semi-circle law to n≠0n\neq 0. We also study the model for ∣n∣>2|n|>2. Both for n2n2 we find that the model is well defined in a certain region of the coupling constant space. For n<−2n<-2 we find no new critical points while for n>2n>2 we find new critical points at which the string susceptibility exponent γstr\gamma_{str} takes the value +12+\frac{1}{2}.Comment: 27 pages, LaTeX file (uses epsf) + 3 eps figures, formulas involving the string susceptibility corrrected, no change in conclusion
    • …
    corecore