466 research outputs found

    The Multiethnic Church as a Reflection of God\u27s Image: A Focus on Reconciliation in a Local Congregation

    Get PDF
    This thesis seeks to discover whether or not a focus on reconciliation in a local church can prompt the congregation to engage their multiethnic neighborhood and become a more diverse church. It argues that in the midst of a broken and hurting world the multiethnic congregation offers a reflection of the image of God and a message of hope to the world. Specifically, this project will explore the question, “Can a focus on reconciliation in the local church lead to an increase of social and cultural engagement by its congregants that produces positive change in the surrounding community?” As a result of this research, the scope of this thesis will also move to a more narrow focus that asks, “Can a focus on reconciliation with the staff of a local church lead to changes that produce an increase in the ethnic diversity of their congregation?” In conclusion, this thesis will demonstrate that an exploration of social psychology’s theory of categorization has direct implications for increasing the senior leaders’ role in developing a multiethnic congregation

    Gravity gradient attitude control system Patent

    Get PDF
    Gravity gradient attitude control system with gravity gradiometer and reaction wheels for artificial satellite attitude contro

    Microfluidic encapsulation of Xenopus laevis cell-free extracts using hydrogel photolithography

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Geisterfer, Z. M., Oakey, J., & Gatlin, J. C. . Microfluidic encapsulation of Xenopus laevis cell-free extracts using hydrogel photolithography. STAR Protocols, 1(3), (2020): 100221, doi:10.1016/j.xpro.2020.100221.Cell-free extract derived from the eggs of the African clawed frog Xenopus laevis is a well-established model system that has been used historically in bulk aliquots. Here, we describe a microfluidic approach for isolating discrete, biologically relevant volumes of cell-free extract, with more expansive and precise control of extract shape compared with extract-oil emulsions. This approach is useful for investigating the mechanics of intracellular processes affected by cell geometry or cytoplasmic volume, including organelle scaling and positioning mechanisms. For complete details on the use and execution of this protocol, please refer to Geisterfer et al. (2020).This work was made possible by an Institutional Development Award (IDeA) from the National Institute of General Medical Sciences of the National Institutes of Health under grant no. 2P20GM103432. It was also supported by additional funding provided by the NIGMS under grant no. R01GM113028, the NSF Faculty CAREER Program under award no. BBBE 1254608, Whitman Center fellowships at the Marine Biological Laboratory, and the Biomedical Scholars program of the Pew Charitable Trusts. We thank Drs. Aaron Groen and Tim Mitchison for their intellectual contributions and involvement in some of the pioneering experiments that set the foundation for this approach

    Adaptive EAGLE dynamic solution adaptation and grid quality enhancement

    Get PDF
    In the effort described here, the elliptic grid generation procedure in the EAGLE grid code was separated from the main code into a subroutine, and a new subroutine which evaluates several grid quality measures at each grid point was added. The elliptic grid routine can now be called, either by a computational fluid dynamics (CFD) code to generate a new adaptive grid based on flow variables and quality measures through multiple adaptation, or by the EAGLE main code to generate a grid based on quality measure variables through static adaptation. Arrays of flow variables can be read into the EAGLE grid code for use in static adaptation as well. These major changes in the EAGLE adaptive grid system make it easier to convert any CFD code that operates on a block-structured grid (or single-block grid) into a multiple adaptive code

    Drop size distribution comparisons between Parsivel and 2-D video disdrometers

    Get PDF
    Measurements from a 2-D video disdrometer (2DVD) have been used for drop size distribution (DSD) comparisons with co-located Parsivel measurements in Huntsville, Alabama. The comparisons were made in terms of the mass-weighted mean diameter, <i>D</i><sub>m</sub>, the standard deviation of the mass-spectrum, <i>&sigma;</i><sub>m</sub>, and the rainfall rate, <i>R</i>, all based on 1-min DSD from the two instruments. Time series comparisons show close agreement in all three parameters for cases where <i>R</i> was less than 20 mm h<sup>−1</sup>. In four cases, discrepancies in all three parameters were seen for "heavy" events, with the Parsivel showing higher <i>D</i><sub>m</sub>, <i>&sigma;</i><sub>m</sub> and <i>R</i>, when <i>R</i> reached high values (particularly above 30 mm h<sup>−1</sup>). Possible causes for the discrepancies include the presence of a small percentage of non-fully melted hydrometers, with higher than expected fall velocity and with very different axis ratios as compared with rain, indicating small hail or ice pellets or graupel. We also present here Parsivel-to-Parsivel comparisons as well as comparisons between two 2DVD instruments, namely a low-profile unit and the latest generation, "compact unit" which was installed at the same site in November 2009. The comparisons are included to assess the variability between the same types of instrument. Correlation coefficients and the fractional standard errors are compared

    Microtubule motors in eukaryotic spindle assembly and maintenance

    Get PDF
    The main function of the mitotic spindle is to accurately segregate replicated chromosomes during cell division. This dynamic, microtubule-based structure is assembled by a dividing cell and facilitates the orchestrated movement of chromosomes that is the hallmark of mitosis. Steady-state spindle size and morphology are relatively constant for cells of a specified type but vary considerably from one cell type to the next. Despite these differences, all eukaryotic spindles share basic architectural similarities, perhaps the most important of which is bipolar symmetry. At its core, assembling a bipolar spindle is a mechanical process that requires dynamic microtubules be moved and arranged to realize some ultimate functional form. These movements are the result of forces generated either by microtubule polymer dynamics or molecular motors. In this review we focus specifically on the motor-dependent mechanisms that shape the spindle and defer a more comprehensive treatment of spindle assembly and other motor functions during mitosis to others [1]

    Divergence and Shannon information in genomes

    Full text link
    Shannon information (SI) and its special case, divergence, are defined for a DNA sequence in terms of probabilities of chemical words in the sequence and are computed for a set of complete genomes highly diverse in length and composition. We find the following: SI (but not divergence) is inversely proportional to sequence length for a random sequence but is length-independent for genomes; the genomic SI is always greater and, for shorter words and longer sequences, hundreds to thousands times greater than the SI in a random sequence whose length and composition match those of the genome; genomic SIs appear to have word-length dependent universal values. The universality is inferred to be an evolution footprint of a universal mode for genome growth.Comment: 4 pages, 3 tables, 2 figure

    Spindle assembly in the absence of a RanGTP gradient requires localized CPC activity

    Get PDF
    Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Current Biology 19 (2009): 1210-1215, doi:10.1016/j.cub.2009.05.061.During animal cell division, a gradient of GTP-bound Ran is generated around mitotic chromatin. It is generally accepted that this RanGTP gradient is essential for organizing the spindle since it locally activates critical spindle assembly factors. Here, we show in Xenopus egg extract, where the gradient is best characterized, that spindles can assemble in the absence of a RanGTP gradient. Gradient-free spindle assembly occurred around sperm nuclei but not around chromatin-coated beads and required the chromosomal passenger complex (CPC). Artificial enrichment of CPC activity within hybrid bead arrays containing both immobilized chromatin and the CPC supported local microtubule assembly even in the absence of a RanGTP gradient. We conclude that RanGTP and the CPC constitute the two major molecular signals that spatially promote microtubule polymerization around chromatin. Furthermore, we hypothesize that the two signals mainly originate from discreet physical sites on the chromosomes to localize microtubule assembly around chromatin: a RanGTP signal from any chromatin, and a CPC-dependent signal predominantly generated from centromeric chromatin.This work was supported by the American Cancer Society (grant PF0711401 to T.J. Maresca), the National Cancer Institute (grant CA078048-09 to T.J. Mitchison) and the National Institutes of Health (grant F32GM080049 to J.C. Gatlin and grant GM24364 to E.D. Salmon)
    corecore