2,262 research outputs found

    Existence and Vanishing of the Breathing Mode in Strongly Correlated Finite Systems

    Full text link
    One of the fundamental eigenmodes of finite interacting systems is the mode of {\em uniform radial expansion and contraction} -- the ``breathing'' mode (BM). Here we show in a general way that this mode exists only under special conditions: i) for harmonically trapped systems with interaction potentials of the form 1/rγ1/r^\gamma (γ∈R≠0)(\gamma\in\mathbb{R}_{\neq0}) or log⁡(r)\log(r), or ii) for some systems with special symmetry such as single shell systems forming platonic bodies. Deviations from the BM are demonstrated for two examples: clusters interacting with a Lennard-Jones potential and parabolically trapped systems with Yukawa repulsion. We also show that vanishing of the BM leads to the occurence of multiple monopole oscillations which is of importance for experiments

    Neural correlates of intentional switching from ternary to binary meter in a musical hemiola pattern

    Get PDF
    Musical rhythms are often perceived and interpreted within a metrical framework that integrates timing information hierarchically based on interval ratios. Endogenous timing processes facilitate this metrical integration and allow us using the sensory context for predicting when an expected sensory event will happen (“predictive timing”). Previously, we showed that listening to metronomes and subjectively imagining the two different meters of march and waltz modulated the resulting auditory evoked responses in the temporal lobe and motor-related brain areas such as the motor cortex, basal ganglia, and cerebellum. Here we further explored the intentional transitions between the two metrical contexts, known as hemiola in the Western classical music dating back to the sixteenth century. We examined MEG from 12 musicians while they repeatedly listened to a sequence of 12 unaccented clicks with an interval of 390 ms, and tapped to them with the right hand according to a 3 + 3 + 2 + 2 + 2 hemiola accent pattern. While participants listened to the same metronome sequence and imagined the accents, their pattern of brain responses significantly changed just before the “pivot” point of metric transition from ternary to binary meter. Until 100 ms before the pivot point, brain activities were more similar to those in the simple ternary meter than those in the simple binary meter, but the pattern was reversed afterwards. A similar transition was also observed at the downbeat after the pivot. Brain areas related to the metric transition were identified from source reconstruction of the MEG using a beamformer and included auditory cortices, sensorimotor and premotor cortices, cerebellum, inferior/middle frontal gyrus, parahippocampal gyrus, inferior parietal lobule, cingulate cortex, and precuneus. The results strongly support that predictive timing processes related to auditory-motor, fronto-parietal, and medial limbic systems underlie metrical representation and its transitions

    Diacamma ants adjust liquid foraging strategies in response to biophysical constraints

    Get PDF
    Ant foragers provide food to the rest of the colony, often requiring transport over long distances. Foraging for liquid is challenging because it is difficult to transport and share. Many social insects store liquids inside the crop to transport them to the nest, and then regurgitate to distribute to nest-mates through a behaviour called trophallaxis. Some ants instead transport fluids with a riskier behaviour called pseudotrophallaxis—holding a drop of liquid between the mandibles through surface tension. Ants share this droplet with nest-mates without ingestion or regurgitation. We hypothesised that ants optimize their liquid-collection approach depending on viscosity. Using an ant that employs both trophallaxis and pseudotrophallaxis, we investigated the conditions where each liquid-collection behaviour is favoured by measuring biophysical properties, collection time and reaction to food quality for typical and viscosity-altered sucrose solutions. We found that ants collected more liquid per unit time by mandibular grabbing than by drinking. At high viscosities ants switched liquid collection method to mandibular grabbing in response to viscosity and not to sweetness. Our results demonstrate that ants change transport and sharing methods according to viscosity–a natural proxy for sugar concentration–thus increasing the mass of sugar returned to the nest per trip

    Magnetic and orbital order in overdoped bilayer manganites

    Full text link
    The magnetic and orbital orders for the bilayer manganites in the doping region 0.5<x<1.00.5 < x <1.0 have been investigated from a model that incorporates the two ege_g orbitals at each Mn site, the inter-orbital Coulomb interaction and lattice distortions. The usual double exchange operates via the ege_g orbitals. It is shown that such a model reproduces much of the phase diagram recently obtained for the bilayer systems in this range of doping. The C-type phase with (π,0,π\pi,0,\pi) spin order seen by Ling et al. appears as a natural consequence of the layered geometry and is stabilised by the static distortions of the system. The orbital order is shown to drive the magnetic order while the anisotropic hopping across the ege_g orbitals, layered nature of the underlying structure and associated static distortions largely determine the orbital arrangements.Comment: 8 pages, 5 figure

    Extracranial-intracranial bypass in atherosclerotic cerebrovascular disease: Report of a single centre experience

    Full text link
    Despite the failure of the international extracranial-intracranial (EC-IC) bypass study in showing the benefit of bypass procedure for prevention of stroke recurrence, it has been regarded to be beneficial in a subgroup of well-selected patients with haemodynamic impairment. This report includes the EC-IC bypass experience of a single centre over a period of 14 years. All consecutive 72 patients with atherosclerotic occlusive cerebrovascular lesions associated with haemodynamic compromise treated by EC-IC bypass surgery were retrospectively reviewed. Pre-operatively, 61% of patients presented with minor stroke and the remaining 39% with recurrent transient ischemic attacks (TIAs) despite maximal medical therapy. Angiography revealed a unilateral internal carotid artery (ICA) stenosis/occlusion in 79%, bilateral ICA stenosis/occlusion in 15%, MCA stenosis/occlusion in 3% and other multiple vessel stenosis/occlusion in 3% of the cases. H(2)(15)O positron emission tomography (PET) or 99mTc-HMPAO SPECT with acetazolamide challenge was performed for haemodynamic evaluation of the cerebral blood flow (CBF). All the patients had impaired haemodynamics pre-operatively in terms of reduced regional cerebrovascular reserve capacity and rCBF. Standard STA-MCA bypass procedure was performed in all patients. A total of 68 patients with 82 bypasses were reviewed with a mean follow-up period of 34 months. Stroke recurrence took place in 10 patients (15%) resulting in an annual stroke risk of 5%. Improved cerebral haemodynamics was documented in 81% of revascularised hemispheres. Patients with unchanged or worse haemodynamic parameters had significantly more post-operative TIAs or strokes when compared to those with improved perfusion reserves (30% vs.5% of patients, p<0.05). In conclusion, EC-IC bypass procedure in selected patients with occlusive cerebrovascular lesions associated with haemodynamic impairment has revealed to be effective for prevention of further cerebral ischemia, when compared with a stroke risk rate of 15% reported to date in patients only under antiplatelet agents or anticoagulant therapy

    Information Security as Strategic (In)effectivity

    Full text link
    Security of information flow is commonly understood as preventing any information leakage, regardless of how grave or harmless consequences the leakage can have. In this work, we suggest that information security is not a goal in itself, but rather a means of preventing potential attackers from compromising the correct behavior of the system. To formalize this, we first show how two information flows can be compared by looking at the adversary's ability to harm the system. Then, we propose that the information flow in a system is effectively information-secure if it does not allow for more harm than its idealized variant based on the classical notion of noninterference

    High-pressure neutron study of the morphotropic PZT: phase transitions in a two-phase system

    Get PDF
    In piezoelectric ceramics the changes in the phase stabilities versus stress and temperature in the vicinity of the phase boundary play a central role. The present study was dedicated to the classical piezoelectric, lead-zirconate-titanate (PZT) ceramic with composition Pb(Zr0.54_{0.54}Ti0.46_{0.46})O3_3 at the Zr-rich side of the morphotropic phase boundary at which both intrinsic and extrinsic contributions to piezoelectricity are significant. The pressure-induced changes in this two-phase (rhombohedral R3cR3c+monoclinic CmCm at room temperature and R3c+P4mmR3c+P4mm above 1 GPa pressures) system were studied by high-pressure neutron powder diffraction technique. The experiments show that applying pressure favors the R3cR3c phase, whereas the CmCm phase transforms continuously to the P4mmP4mm, which is favored at elevated temperatures due to the competing entropy term. The Cm→R3cCm\rightarrow R3c phase transformation is discontinuous. The transformation contributes to the extrinsic piezoelectricity. An important contribution to the intrinsic piezoelectricity was revealed: a large displacement of the BB cations (Zr and Ti) with respect to the oxygen anions is induced by pressure. Above 600 K a phase transition to a cubic phase took place. Balance between the competing terms dictates the curvature of the phase boundary. After high-pressure experiments the amount of rhombohedral phase was larger than initially, suggesting that on the Zr-rich side of the phase boundary the monoclinic phase is metastable.Comment: 6 figure

    Engrailed cooperates directly with Extradenticle and Homothorax on a distinct class of homeodomain binding sites to repress sloppy paired.

    Get PDF
    Even skipped (Eve) and Engrailed (En) are homeodomain-containing transcriptional repressors with similar DNA binding specificities that are sequentially expressed in Drosophila embryos. The sloppy-paired (slp) locus is a target of repression by both Eve and En. At blastoderm, Eve is expressed in 7 stripes that restrict the posterior border of slp stripes, allowing engrailed (en) gene expression to be initiated in odd-numbered parasegments. En, in turn, prevents expansion of slp stripes after Eve is turned off. Prior studies showed that the two tandem slp transcription units are regulated by cis-regulatory modules (CRMs) with activities that overlap in space and time. An array of CRMs that generate 7 stripes at blastoderm, and later 14 stripes, surround slp1 (Fujioka and Jaynes, 2012). Surprisingly given their similarity in DNA binding specificity and function, responsiveness to ectopic Eve and En indicates that most of their direct target sites are either in distinct CRMs, or in different parts of coregulated CRMs. We localized cooperative binding sites for En, with the homeodomain-containing Hox cofactors Extradenticle (Exd) and Homothorax (Hth), within two CRMs that drive similar expression patterns. Functional analysis revealed two distinct, redundant sites within one CRM. The other CRM contains a single cooperative site that is both necessary and sufficient for repression in the en domain. Correlating in vivo and in vitro analysis suggests that cooperativity with Exd and Hth is a key ingredient in the mechanism of En-dependent repression, and that apparent affinity in vitro is an unreliable predictor of in vivo function

    Reaction Intensity Partitioning: A New Perspective of the National Fire Danger Rating System Energy Release Component

    Get PDF
    The Rothermel fire spread model provides the scientific basis for the US National Fire Danger Rating System (NFDRS) and several other important fire management applications. This study proposes a new perspective of the model that partitions the reaction intensity function and Energy Release Component (ERC) equations as an alternative that simplifies calculations while providing more insight into the temporal variability of the energy release component of fire danger. We compare the theoretical maximum reaction intensities and corresponding ERCs across 1978, 1988 and 2016 NFDRS fuel models as they are currently computed and as they would be computed under the proposed scheme. The advantages and disadvantages of the new approach are discussed. More study is required to determine its operational implications
    • 

    corecore