28 research outputs found

    Zinc-dependent mechanical properties of Staphylococcus aureus biofilm-forming surface protein SasG

    No full text
    Staphylococcus aureus surface protein SasG promotes cell-cell adhesion during the accumulation phase of biofilm formation, but the molecular basis of this interaction remains poorly understood. Here, we unravel the mechanical properties of SasG on the surface of living bacteria, that is, in its native cellular environment. Nanoscale multiparametric imaging of living bacteria reveals that Zn(2+) strongly increases cell wall rigidity and activates the adhesive function of SasG. Single-cell force measurements show that SasG mediates cell-cell adhesion via specific Zn(2+)-dependent homophilic bonds between ÎČ-sheet-rich G5-E domains on neighboring cells. The force required to unfold individual domains is remarkably strong, up to ∌500 pN, thus explaining how SasG can withstand physiological shear forces. We also observe that SasG forms homophilic bonds with the structurally related accumulation-associated protein of Staphylococcus epidermidis, suggesting the possibility of multispecies biofilms during host colonization and infection. Collectively, our findings support a model in which zinc plays a dual role in activating cell-cell adhesion: adsorption of zinc ions to the bacterial cell surface increases cell wall cohesion and favors the projection of elongated SasG proteins away from the cell surface, thereby enabling zinc-dependent homophilic bonds between opposing cells. This work demonstrates an unexpected relationship between mechanics and adhesion in a staphylococcal surface protein, which may represent a general mechanism among bacterial pathogens for activating cell association

    Imaging living cells surface and quantifying its properties at high resolution using AFM in QI (TM) mode

    No full text
    International audienceSince the last 10 years, AFM has become a powerful tool to study biological samples. However, the classical modes offered (imaging or tapping mode) often damage sample that are too soft or loosely immobilized. If imaging and mechanical properties are required, it requests long recording time as two different experiments must be conducted independently. In this study we compare the new QI (TM) mode against contact imaging mode and force volume mode, and we point out its benefit in the new challenges in biology on six different models: Escherichia coli, Candida albicans, Aspergillus fumigatus, Chinese hamster ovary cells and their isolated nuclei, and human colorectal tumor cells

    Unravelling of a mechanism of resistance to colistin in Klebsiella pneumoniae using atomic force microscopy

    No full text
    International audienceObjectives: In this study we focused on the mechanism of colistin resistance in Klebsiella pneumoniae.Methods: We used two strains of K. pneumoniae: a colistin-susceptible strain (K. pneumoniae ATCC 700603, KpATCC) and its colistin-resistant derivative (KpATCCm, MIC of colistin 16 mg/L). We performed a genotypic analysis based on the expression of genes involved in LPS synthesis and L-Ara4N moiety addition. We also explored the status of the mgrB gene. Then, a phenotypic analysis was performed using atomic force microscopy (AFM). The Young modulus was extracted from force curves fitted using the Hertz model, and stiffness values were extracted from force curves fitted using the Hooke model.Results: We failed to observe any variation in the expression of genes implicated in LPS synthesis or L-Ara4N moiety addition in KpATCCm, in the absence of colistin or under colistin pressure (versus KpATCC). This led us to identify an insertional inactivation/mutation in the mgrB gene of KpATCCm. In addition, morphology results obtained by AFM showed that colistin removed the capsule from the susceptible strain, but not from the resistant strain. Nanomechanical data on the resistant strain showed that colistin increased the Young modulus of the capsule. Extend force curves recorded on top of the cells allowed us to make the following hypothesis about the nanoarchitecture of the capsule of the two strains: KpATCC has a soft capsule consisting of one layer, whereas the KpATCCm capsule is harder and organized in several layers.Conclusions: We hypothesize that capsular polysaccharides might be implicated in the mechanism of colistin resistance in K. pneumoniae, depending on its genotype

    Generation of living cell arrays for atomic force microscopy studies

    No full text
    International audienceAtomic force microscopy (AFM) is a useful tool for studying the morphology or the nanomechanical and adhesive properties of live microorganisms under physiological conditions. However, to perform AFM imaging, living cells must be immobilized firmly enough to withstand the lateral forces exerted by the scanning tip, but without denaturing them. This protocol describes how to immobilize living cells, ranging from spores of bacteria to yeast cells, into polydimethylsiloxane (PDMS) stamps, with no chemical or physical denaturation. This protocol generates arrays of living cells, allowing statistically relevant measurements to be obtained from AFM measurements, which can increase the relevance of results. The first step of the protocol is to generate a microstructured silicon master, from which many microstructured PDMS stamps can be replicated. Living cells are finally assembled into the microstructures of these PDMS stamps using a convective and capillary assembly. The complete procedure can be performed in 1 week, although the first step is done only once, and thus repeats can be completed within 1 d

    Molecular interactions and inhibition of the staphylococcal biofilm-forming protein SdrC

    No full text
    Staphylococcus aureus forms biofilms on indwelling medical devices using a variety of cell-surface proteins. There is growing evidence that specific homophilic interactions between these proteins represent an important mechanism of cell accumulation during biofilm formation, but the underlying molecular mechanisms are still not well-understood. Here we report the direct measurement of homophilic binding forces by the serine-aspartate repeat protein SdrC and their inhibition by a peptide. Using single-cell and single-molecule force measurements, we find that SdrC is engaged in low-affinity homophilic bonds that promote cell–cell adhesion. Low-affinity intercellular adhesion may play a role in favoring biofilm dynamics. We show that SdrC also mediates strong cellular interactions with hydrophobic surfaces, which are likely to be involved in the initial attachment to biomaterials, the first stage of biofilm formation. Furthermore, we demonstrate that a peptide derived from ÎČ-neurexin is a powerful competitive inhibitor capable of efficiently blocking surface attachment, homophilic adhesion, and biofilm accumulation. Molecular modeling suggests that this blocking activity may originate from binding of the peptide to a sequence of SdrC involved in homophilic interactions. Our study opens up avenues for understanding the role of homophilic interactions in staphylococcal adhesion, and for the design of new molecules to prevent biofilm formation during infection

    Directed assembly of living Pseudomonas aeruginosa on PEI patterns fabricated by nanoxerography for statistical AFM bio-experiments

    No full text
    International audienceImmobilization of living micro-organisms on predefined areas of substrates is a prerequisite for their characterizations by atomic force microscopy (AFM) in culture media. It remains challenging since micro-organisms should not be denatured but attached strongly enough to be scanned with an AFM tip, in a liquid phase. In this work, a novel approach is proposed to electrostatically assemble biological objects of interest on 2 nm thick polyethylenimine (PEI) patterns fabricated by nanoxerography. This nanoxerography process involves electrostatic trapping of PEI chains on negatively charged patterns written on electret thin films by AFM or electrical microcontact printing. The capability of this approach is demonstrated using a common biological system, Pseudomonas aeruginosa bacteria. These negatively charged bacteria are selectively assembled on large scale arrays of PEI patterns. In contrast to other PEI continuous films commonly used for cell anchoring, these ultrathin PEI patterns strongly attached on the surface do not cause any denaturation of the assembled Pseudomonas aeruginosa bacteria. AFM characterizations of large populations of individual living bacteria in culture media can thus be easily performed through this approach, providing the opportunity to perform representative statistical data analysis. Interestingly, this process may be extended to any negatively charged micro-organism in solution

    Use of atomic force microscopy (AFM) to explore cell wall properties and response to stress in the yeast Saccharomyces cerevisiae

    No full text
    Over the past 20 years, the yeast cell wall has been thoroughly investigated by genetic and biochemical methods, leading to remarkable advances in the understanding of its biogenesis and molecular architecture as well as to the mechanisms by which this organelle is remodeled in response to environmental stresses. Being a dynamic structure that constitutes the frontier between the cell interior and its immediate surroundings, imaging cell surface, measuring mechanical properties of cell wall or probing cell surface proteins for localization or interaction with external biomolecules are among the most burning questions that biologists wished to address in order to better understand the structure-function relationships of yeast cell wall in adhesion, flocculation, aggregation, biofilm formation, interaction with antifungal drugs or toxins, as well as response to environmental stresses, such as temperature changes, osmotic pressure, shearing stress, etc. The atomic force microscopy (AFM) is nowadays the most qualified and developed technique that offers the possibilities to address these questions since it allows working directly on living cells to explore and manipulate cell surface properties at nanometer resolution and to analyze cell wall proteins at the single molecule level. In this minireview, we will summarize the most recent contributions made by AFM in the analysis of the biomechanical and biochemical properties of the yeast cell wall and illustrate the power of this tool to unravel unexpected effects caused by environmental stresses and antifungal agents on the surface of living yeast cells
    corecore